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PREFACE

This is a book on the numerical analysis of partial differential equations (PDEs). This
beautiful subject studies the theory behind algorithms used to approximate solutions
of PDEs. The ultimate goal is to design methods which are accurate and efficient. It
is a relatively young field which draws upon powerful theory from many branches of
mathematics, both pure and applied.

The contents in this book are suitable for a two-semester course at the senior
undergraduate or beginning graduate level, for students in mathematical sciences
and engineering. The emphasis is on elliptic PDEs, with one chapter discussing
evolutionary PDEs. A prerequisite for reading this book is a solid undergraduate
course in analysis. Some exposure to numerical analysis and PDEs is helpful.

Our aim is to offer an introduction to most of the important concepts in the numer-
ical analysis of PDEs. The two-dimensional Poisson equation is the model problem
upon which the various methods are analyzed. Because of the simplicity of this equa-
tion, the analysis can almost always be carried out in full. In this sense, this book
is entirely self-contained; the student does not need to consult other books for the
proof of a theorem. The only exception is the chapter on the mathematical theory of
elliptic PDEs, where very few proofs are given. Many students taking this course may
have no prior experience in this area and thus this chapter is simply an introduction
to the topic by examples. A proper treatment of PDEs requires several semesters,
which most students cannot accommodate in their programs. Some may argue that
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there is too much emphasis on the Poisson equation, however, our response is that for
an introductory course, this equation is appropriate because it gives a good picture
of the kinds of results expected without the complications involved in more general
PDEs. Convection-diffusion equations and nonlinear equations are of course inter-
esting, but they belong to more advanced courses and many topics there are still under
active research. Other omitted topics include finite volume methods, discontinuous
Galerkin methods, meshless methods, Monte Carlo methods, wavelets, eigenvalue
problems, inverse problems, free boundary value problems, etc. Implementation and
visualization issues are not discussed at all.

The topics covered are the three main discretization methods of elliptic PDEs: finite
difference, finite elements and spectral methods. These are presented in Chapters 1, 3
and 5, respectively. In between are discussions on the mathematical theory of elliptic
PDEs in Chapter 2 and numerical linear algebra in Chapter 4. Time-dependent PDEs
make a brief appearance in Chapter 6. Multigrid and domain decomposition, are
covered in Chapters 7 and 8. These are among the most efficient techniques for
solving PDEs today. Chapter 9 contains a discussion of PDEs posed on infinite
domains. The main issue here is how to pose the boundary condition on the artificial
boundary which is necessary on a finite computational domain. Methods for nonlinear
problems are briefly described in Chapter 10. Here, we also describe some important
nonlinear problems in many fields of science and engineering. These can serve as
computing projects for students from different disciplines.

Each chapter can be, and have been, expanded by other authors into a course by
itself! Most chapters can be covered in approximately 10 hours. The exceptions are:
Chapter 3 (finite elements) and Chapter 5 (spectral methods) which require about 15
hours each to cover all sections; Chapter 6 (multigrid), Chapter 9 (infinite domains)
and Chapter 10 (nonlinear problems) need about five hours each.

A few words about the ordering of the chapters are called for. The material on
the finite difference method requires few prerequisites and thus is placed in the first
chapter. The analysis of the finite element and spectral methods uses the language
of Sobolev spaces and their properties, which are conveniently covered in the second
chapter. Having seen the structured matrices in the finite difference method and
the unstructured matrices in the finite element method, readers are well motivated
to appreciate and comprehend the issues in numerical linear algebra in Chapter 4.
A possible alternative ordering of the first part of the book is to discuss Sobolev
spaces first, followed by the three discretization techniques and finally numerical
linear algebra. The problem is that the material on PDE theory appears to many
students as abstract, dry and unmotivated. Furthermore, the discussion on numerical
PDE:s does not begin until the fourth week. This book does not have to be read in the
order presented but Chapter 2 should precede all subsequent chapters except 4, 9 and
10. Chapters 6 through 9 can be read in any order, but they rely heavily on material
from the first four chapters.

No one learns mathematics by reading alone. Exercises are an integral part of
this book and students are encouraged to try them. They are essential for reinforcing
the material and many extend theories and techniques developed in the text. Both
theoretical and programming problems are available, with the former prefixed by E
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and the latter prefixed by P. Answers to selected written exercises are given. Although
this book does not emphasize the implementation of the algorithms, readers willing
to invest time on the programming exercises will gain a much better appreciation of
the subject. As already mentioned, about half of the chapters can be covered in about
four weeks. The time frame can easily extend by one to two weeks per chapter if
students do a substantial fraction of the written and programming exercises.

Almost all material in this book are well known to numerical analysts and have
been gleaned from various sources listed in the bibliography. References to texts
or monographs are generally given in place of the original articles. There are al-
ready excellent texts on each of the areas discussed in this book but there does
not appear to be one which covers all the topics here. The present book should
serve as a good preparation for more advanced work. Readers are encouraged
to send their comments and corrections to luish@cc.umanitoba.ca. A webpage
http://home.cc.umanitoba.ca/~Iuish/numpde has been created for this book. It will
contain errata as well as some MATLAB programs.
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CHAPTER 1

FINITE DIFFERENCE

The finite difference method was one of the first numerical methods used to solve
partial differential equations (PDEs). It replaces differential operators by finite dif-
ferences and the PDE becomes a (finite) system of equations. Its simplicity and ease
of computer implementation make it a popular choice for PDEs defined on regular
geometries. One drawback is that it becomes awkward when the geometry is not
regular or cannot be mapped to a regular geometry. Another disadvantage is that
its error analysis is not as sharp as that of the other methods covered in this book
(finite element and spectral methods). A recurring theme is that the analysis of, and
properties of, discrete operators mimic those of the differential operators. Examples
include integration by parts, maximum principle, energy method, Green’s function
and the Poincaré—Friedrichs inequality.

1.1 SECOND-ORDER APPROXIMATION FOR A
Consider the Poisson equation

—Au = fonf, u = 0 on 0. (1.1)

Numerical Analysis of Partial Differential Equations. By S. H. Lui 1
Copyright © 2011 John Wiley & Sons, Inc.



2 FINITE DIFFERENCE

Here,
02 9?
= 0x? + oy?

is the Laplacian in two dimensions. Throughout this chapter, except the sections on
polar coordinates and curved boundaries, €2 is the unit square (0,1)? = {(z,y), 0 <
&, < 1}.

The Poisson equation is a fundamental equation which arises in elasticity, elec-
tromagnetism, fluid mechanics and many other branches of science and engineering.
Because an explicit expression of the solution is available only in a few exceptional
cases, we often rely on numerical methods to approximate the solution. The goal
of the subject of numerical analysis of PDEs is to design a numerical method which
approximates the solution accurately and efficiently. Roughly speaking, a method is
accurate if the computed solution differs from the exact solution by an amount which
goes to zero as h, a discretization parameter, goes to zero. A method is efficient if the
amount of computation and storage requirement of the method do not grow quickly
as a function of the size of the input data, f, in the case of the Poisson equation. The
remaining pages of this book will be preoccupied with these issues and will culminate
in algorithms (multigrid and domain decomposition) which are optimal in the sense
that the amount of work to approximate the solution is no more than a linear function
of the size of the input.

We take a uniform grid of size h = 1/n, where n is a positive integer. Let

Qp = {zij = (th,jh), 1 <i,j<n-1}
denote the set of interior grid points and
o = {(0,5h), (1,5h), (7R, 0), (jh,1), 1 <j<n-—1}

denote the boundary grid points. [Observe that the comer points (0, 0), (1, 0), (0,1),
(1,1) are not in 3,.] Define Q;, = Q, U, which consists of (n+1)2 — 4 points.

The finite difference method seeks the solution of the PDE at the grid points in
Q. Specifically, the (n — 1)? unknowns are u;; = u(ih,jh), 1 < i,j < n — 1.
We obtain (n — 1)? equations by approximating the differential equation by a finite
difference approximation at each interior grid point. That is,

duij — Uig1,j — Wi-1,j — Uij41 — Uij—1
o = fij == f(zi;)-
(These equations will be derived later when we discuss the consistency of the scheme.)
The boundary values are ug; = Upn; = Uip = Uin =0, 1 < 4,5 < n — 1; they are
known from the boundary condition. The system of linear equations is denoted by
the discrete Poisson equation

—Apup = fp.
Here, uy, is the vector of unknowns arranged in an order so that Ay, is block tridiagonal:

123 T
Up = [Uu,--- yUn—1,1,U12, -+« , Un—1,2,- - - aun—l,n—l] ,
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For=fa,on A, ot vy Peind
Eovrtvised 4. ~1
PRI . 1 4 -1
_Ah = ﬁ 3 .. s T: .. .. .
<Y ey 1 4 -1

-1 T -1 4

Both T" and I above are (n — 1) x (n — 1) matrices with I the identity matrix. An
alternative representation of Ay, is given by the molecule

Before proceeding further, we define some norms which measure the size of vectors
and matrices. First consider the infinity norm on R, For any € R, define

|z]oo = k0 |zi].

Forany N x N matrix A, we claim that

N
iy |Az|o
|Aloo := sup = @2}5\,2‘: |ai!.
J=

z€RN\0 7] oo

In other words, |A|~ equals the maximum row sum of the matrix. To see this, for
any x € RV \ 0,

N
> =1 015T;
. max Zaij.’L‘]’
N
| Az|oo > j=1 AN;T; el =
= = max Z @]
|Z]o0 |Z]oo |00 1<Z<N

Hence |A|o < maxi<i<n Z;\_’___l |aij|. To show equality, suppose A # 0 and the
maximum row sum occurs on row i. Define x; = sign(a;;). Then |z|o, = 1 and
|AT|oo = Z;Vzl |a;;|. As an application, we note that [Ap | = 8h72.

Another useful norm is the Euclidean (or 2-) norm defined by |z|3 = 27z and for
matrix A,

Ax
|Al2 = sup | T|2'
x#£0 I-TIZ

One useful property is |A|2 = o7, where o is the largest eigenvalue of AT A. If A is
symmetric, then [A|s = |A;| while |A~!|3 = [A3}|, where \; and )y are eigenvalues
of A of largest and smallest magnitude, respectively.
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Two norms || - ||; and || - ||2 in a normed vector space X are said to be equivalent if
there are positive constants ¢; such that forevery v in X, ¢;||v|l1 < [|v|l2 < ez|v]|1.
It is well known that any two norms on a finite-dimensional space are equivalent.
This means that we cari use | - |2 or | - |«, whichever is more convenient. Although ¢,
and ¢, are independent of v € X, they do depend on NV, the dimension of the space.

Finally, we define C’(Ql, for 0 < r < oo, as the space of r times continuously
differentiable functions on €2 with norm

V||lgr@ = max sup |D*v(z)|.
I |C (Q) oglaISTzeﬁl =

Here D*v denotes any derivative of v up to rth order, where « is a multi-index. For
instance, if o = (2,1), then D®v denotes the 3rd derivative v;;,. We abbreviate
C%Q) as C(Q). If v € C"(Q), then D € C(Q) for every a such that |a| :=
a1 + ag < r. Define

HU”Z‘r(ﬁ) = Imliix sup |[D%v(z)|. (1.2)

XI=T zed

This is not a norm but it comes up frequently in the analysis of finite difference
schemes. In the one-dimensional case,

[olcaqo = max (v(@)], [0/ @ 10" @D, wléago.y = max " @)l

In this book, all functions are real unless otherwise specified. Also, c appears in many
places and denotes a positive constant whose value may differ in different occurrences.
The same remark applies to ¢y, co, C, Cy, Cs, etc.

Next, we shall demonstrate several properties of —Aj. These are crucial in esti-
mating the error of the approximate solution.

Positive Definiteness

Let (-, -) be the L? inner product defined by

(u,v)z/ﬂuv

for all square-integrable functions v and v defined on €. It is well known that —A is
a self-adjoint and positive definite operator. This means that for all smooth functions
u, v, w vanishing on 92 with w # 0,

(-Au,v) = (u,—Av) and (—Aw,w) > 0.

(A rigorous justification of self-adjointness is non-trivial since it requires checking
the domain of the operator.)

We now show that the discrete operator has analogous properties. By inspection,
—Ay, is symmetric. We now show that it is positive definite. This is shown in two



