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Introduction

Perturbation of the boundary (or of the domain of definition of a boundary
value problem) is a rather neglected mathematical topic, though it has attracted
occasional interest: Rayleigh [33] in 1877 (the first edition), Hadamard [9] in
1908, Courant and Hilbert [5] in the German edition of 1937, Polya and Szégo
[31]in 1951, Garabedian and Schiffer [7] in 1952, and some more recent work
[3, 14,6, 13, 26, 21-23, 42, 35, 32, 27, 10, 11]. The list is far from complete,
but is notably sparse.

There seem to be two related reasons for this neglect: (1) the subject is too
easy; (2) it is too difficult. If you are interested only in Fundamental Questions,
this is certainly a trivial topic. One perturbs the region by applying a diffeomor-
phism near the identity; but you can change variables via this diffeomorphism
to keep the region fixed, and are then only perturbing the coefficients in a fixed
region. It is simply the chain rule. However, if you try to carry out this trivial
change of variables, you will become mired in such long and difficult calcula-
tions that you’ll be tempted to quit. If you persist, and are fortunate, and are
extremely careful, there may be a miraculous simplification at the end. On expe-
riencing this miracle for the second time I became suspicious — theorems 2.2,
2.4 show how to go directly to the “miracle,” bypassing the computational
morass. (Peetre [27] also found part of this result, and it is implicit in Courant
and Hilbert [5: vol. 1 p. 260] for variational problems.) It is, at the end, merely
the chain rule, and we may then apply standard tools (implicit function theorem,
Liapunov, Schmidt method, transversality theorem) to problems of perturba-
tion of the boundary. But the standard tools are not enough — new problems
arise requiring, for example, a more general form of the transversality theorem
for problems with Fredholm index — oo (ch. 5). Open problems abound. The
calculus developed in chapter 2 applies — in principle — to almost any boundary
or initial boundary-value problem, but often leads immediately to difficult un-
solved problems. To avoid excessive depression of author and reader, we will



2 Introduction

concentrate on questions we can answer — generally boundary-value problems
for scalar second-order elliptic equations. The subject is not, after all, entirely
trivial.

I have worked on perturbation of the boundary sporadically since about
1973, after reading Joseph’s article [13]. The formulas of theorems 2.2, 2.4
date from 1975 — in a more complicated version — and most of the examples of
chapters 3 and 4 (and a few from chapter 6) were developed in 1975-1981 and
exposed in seminars at the University of Kentucky. Brown University and the
University of Sdo Paulo. In 1982, I had the opportunity to develop this topic at
some length [ 1 1] at the University of Brasilia. Later that year I generalized the
transversality theorem (lectures at Sao Carlos, September 1982), which solved
some problems left open in [ 1 1] and raised a host of new open problems. These
demanded some tedious calculation — such as those in chapter 7 — which were
only completed recently, and then only in special cases: much remains to be
done. If the word “I”” seems to appear excessively here, it is because very few
other people have worked on these problems in the past twelve years with a
comparable approach, and my work has been independent of these few (aside
from some of the examples cited below). There are, of course, other notions of
a “small change in the domain™ besides “image under diffeomorphism near the
identity™ (see, for example, [3, 26, 10]): the advantage of using such regular
perturbations will hopefully become more clear as we proceed.

In the past five years, my work has been supported by FAPESP, and of
course by IME-USP. It would have been nice to have this ready for the fiftieth
anniversary of the University of Sdo Paulo, but as usual I missed the deadline.
Still, better late than never: Happy 51" birthday!

Most of the following (Chapters 1 to 7) was written in 1985. But at the end
of that year, I found a way to circumvent Horrible Chapter Seven, the method
of rapidly oscillating solutions. My course was clear: everything should be
rewritten with the new method! Unfortunately, I couldn’t seem to find the time
and energy needed for the task. Finally, Jack Hale and Antonio Luiz Pereira
persuaded me to publish it as it stands, with only minor corrections. (Except that
the correction of Theorem 7.6.10 is not so minor, and this required rewriting
Example 6.8.) A new chapter was added. on the method of rapidly oscillating
solutions, with a new example (8.5: generic simplicity of solutions of a system)
to show the power of the method. And, with a few years perspective, Chapter 7
does not seem so horrible.

Thanks Jack and Antonio Luiz for getting it moving!



Chapter 1

Geometrical Preliminaries

In this chapter we introduce some notation. find convenient representations for
regions in R” with smooth boundary (1.2-1.7) and develop some tools needed
later: approximation by smooth regions (1.8), smooth extension of functions
(1.9), smooth deformations of regions (1.10), differentiation of integrals (1.11),
and differential operators on a hypersurface (1.12). In short, a mixed bag of
topics which will be needed later. and it may be wise to omit details until the
need becomes apparent.

We treat only smoothly-bounded regions. Initial-boundary-value problems
lead naturally to the study of regions with corners; but our examples will be
elliptic boundary-value problems, and smooth regions provide sufficient variety.

1.1 Some Notation

For a function f defined near x € R”, the m"" derivative at x, D" f(x). may be
considered as a homogeneous polynomial of degree m (h — D" f(x)h") on
R", or as a symmetric m-linear form, or as the collection of partial derivatives

.) (%3
Dmf(.\') — {(d—(\—> f) ol = ml R

depending on convenience. Then the norm |D" f(x)| may denote

(2) 1w
ox ) - 3

The last version has the advantage of being independent of rotation of coordi-

max
|at|=m

or max |D" f(x)h™|.
hl<1

nates in R”, but the norms are equivalent.
If Qisanopensetin R” andm > 0an integer. C"(£2) is the space of m-times
continuously and bounded differentiable functions on  whose derivatives
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extend continuously to the closure €2, with the usual norm
lollcng = max sup | D/ ()]
=M yeQ

The space of values is some normed linear space £, and is not clear which “E™
is meant, we may write C" (2, £).

* C)(S2) is the closed surface of C"(S2) consisting of functions whose m™
derivative is uniformly continuous: if € is bounded, this is C"'(£2).
e C"Y(Q) is the subspace of C,’,’,’”, (€2) consisting of functions whose m""

derivative is Holder continuous with exponent « (0 < o < 1), provided with
the norm

@ |lcrme(@)y = max (“d’“("”(Q,. H(EZ(Dmd)))
where
H(f) = sup{l £() = FWI/Ix = y[“ : x # y € Q)

(This space is “boundedly closed” in C"(£2); that is, a bounded sequence in
C"“($2) which converges uniformly (in CY(£2)) has its limits in C"*“(2).)

o C"(Q) is the closed subspace of C"-“(2), 0 < @ < 1, consisting of
functions ¢ € C"-“(£2) such that

ID"¢(x) — D"p(W)|/Ix —y|“ =0 asx—y—>0 (x,y€ ),
provided with the same C"“(€2) norm.
It is sometimes convenient to write

Cm,(l for (wm. (-nl.l)+ for C/n

unif

soweallowO <o <1inC"™%and 0 <« < | in C"o* C,'j:l"(Q)[C;:f“”Jr(Q)I

is the space of functions whose restrictions to any £ (with €, compact in )
are in C"%(Q20)[C"** (). respectively].

C'X(Q)_—‘ﬂCW(Q). Im(Q) mCh”(Q)

m m
C”(£2) = analytic functions defined on an open set of R” containing  (hence,
extending to analytic functions on an open set in C", when we consider R" as
(zeC":Im:z=0}.)
Definition 1.2. An open set Q@ C R" has C"-regular boundary [or C"“ or
C"™* or C) or C)“" or C™ or € or C*; regular boundary], if there exists

¢ € C"(R", R) [or C"* or C"“* ¢ . | which is at least in C,,,,,, (R", R) such
that

Q=[x eR":px) > 0)
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and ¢(x) = 0 implies |grad¢(x)| > 1. We may also say 2 is a C" region or Q2
is C" regular | or C"“ or...|.

Theorem 1.3. Q C R” has C"-regular boundary (or C"%orC"-**) — at least
~1
¢ uni [
open ball B C R" of radius r, after appropriate rotation and translation of

— if and only if there are positive constants r, M such that, given any
coordinates, we have

QNB={xeRy, >y¥@}INB, IT=(x,..... Y1)
0QNB={xeR'x, =¢¥(®)}NB

for some € C"(R"' R) (or C™% or C"“%) with norm < M. Note the
conditions are trivial if BN 0Q = (.

Remark. This implies easily that our definition of C"-regular boundary is
equivalent to that used by F. Browder and Agmon-Douglis-Nirenberg in their
studies of elliptic boundary value problems. We will see that Def. 1.2 is very
convenient for discussing perturbations of the boundary (as in 1.8 below). Our
Definition 1.2 applied only when 92 is at least uniformly C''. The condition of
Thm. 1.3 is more general, in that we may permit (for example) ¥ to be merely
Lipschitz continuous (in C Y (R"1y) which gives the “minimally smooth” do-
mains of Stein’s extension theorem [38, Sec. 6.3]. Some of our results apply
to regions with convex corners, transversal intersections of smooth regions, as
described in the remark following Thm. 1.9.

Proof. Suppose 2 = {x |¢(x) > 0} is C" (or C"™* or C"™-*") regular, ¢p(x) =
0 = |grad ¢(x)| > 1, L = sup|grad ¢|,and chooser > Oso|x —y| < 6Lr =
[Dp(x) — Dp(y)| < 1/2.

Let B be a ball of radius » in R” which meets d$2; we may assume the center
of the ball is 0. If 0 € 92, choose the positive x,-axis along the inward normal
(i.e., grad ¢ (0)). Otherwise let p be a point of 32 N B closest to 0 and choose
the x,- axis to contain p and be directed into 2. Then p = (0, p,), [p,| <1,
and %(p) = |D¢(p)| = 1 (possibly p = 0). Also ¢ (0, s) has the same sign
ass — p, in —r < < r, and for |[x — p| < 6Lr we have %(.\') > 1/2.

Let £ € R"', |£] < 2r; then |p(£, x,) — (0, x,)| <2Lr and £¢(£. p, +
4Lr) > +¢(0, p, £4Lr) —2Lr > 0 so there exists unique ¥ (%) € (p, —
4Lr, p, +4Lr)with¢(X, (1)) = 0. By the implicit function theorem, v is C"'
(or C"4 or C"-** respectively) and |[Dy(%)| = |—(9¢ /%) /(¢ /0x,)| <2M
for || < 2r. Choose some (fixed) C*0 : R — [0, 1] with 6(1r) = 1 forr < 1,
6(t) =0 for t > 3/2, and let ¥o(X) = 6(|X|/r)y¥ (%), or zero for |£| > 3r/2.
Then o € C"(R"~!) (or C"™* or C"“") with norm bounded by a multiple
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(depending only on n, m, «, r) of the norm of ¢, and
QNB={xeB|x,>Yo), 9QNB={veB|x,=yd)

For the converse, we need the following

Lemma 14. Let o > J/n.r > 0, and for each k = (k. ..., k,) e Z", let B,
be the open ball in R" with radius r and center (r/o)k, while B,"": is the
concentric ball with radius /2. Then every point of R" is contained in some
BA”:. and no point is contained in more than (2o + 1)" of the balls By.

Proof of the Lemma. The result is invariant under a homothety (x > cx, ¢ =
constant > 0) so it suffices to treat the case r = 0. If v € R” there exists k € Z"
sox —k e[='. ). hence |x — k| < /n/2 <o/2sox € B‘”z.

Suppose v € By: then for each j=1....n. |x; —k;| <o so k; is an

integer in (v; —o.x;+0). But (x; —0o.x; +0) contains no more than
20 + 1 integers, so there are at most (20 + 1)" choices of k € Z" such that
x e B*.
Completion of Proof of (1.3). Assume r. M given satisfying the requirements
of the theorem; we must find ¢ : R" — R which satisfies the conditions
(1.2). Choose o = /2n + 1 in the lemma. There is a C™ partition of unity
{Dithezr

supp ¢ C BAI/Z. ¢ = 0, Zq&k(,\') =]
k

with || ||C" (or ||y |C™ %) uniformly < K = K(n,r,m, ).
If B, N OS2 # ¢, there is a function S;(x) of class C"(or C"%or C"* 1) —
Si(x) = x, — ¥(X) after rotation of coordinates — such that

QN B, ={x € B, : Si(x) > 0},
a2 N BL = {,\' € By : S;\(A\') = 0}

with [|S¢ [l or ¢mey < M and
Siv) = 0= | DS (0)] > 1.

If BiCcQ. let Si=1:if ByNQ=0®. let S; =—1. Define ¥(x)=
Y 1 $u(x)Sk(x). Then ¥ is in C"(R". R) [or C"“or C"*]. ¢ > 0in Q, ¢ =
0 on 92, ¥ < 0 outside Q. If x € 9 then ¢ (x)S;(x) = 0 for each & and at
x, grad (¢ Sk) = ¢ grad S; which either vanishes or has the direction of the
inward normal so |grad ¢ (x) | = ZA ¢p(v)] grad Si(x)| = 1.

The following “normal coordinates™ are sometimes useful.
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Theorem 1.5. Let Q@ C R” have C"-regular boundary (or C"* or C"“*,
2 <m < o00). There exists r > 0 so that if
B, (092) = {x : dist(x, 02) < 1}
7 (x) = the point of 02 nearest to x
t(x) = Edist(x, 02) (4 outside, =" inside)
then t(-) : B(02) — (—r,r). () : B.(02) — 0 are well-defined, w is a

C" Y (or CMN o CVNTY retraction onto 92 (w(x) = X when x € 9Q)
and t has the same smoothness as 92 (C" or C"™“ or C"“"). Further

X > (1), () 2 B (0R) — (—r.1r) x 0R2
isa C" " (or C"N or C"V9) diffeomorphism with inverse
(r.&) > E+INE): (—r.1) x 02 — B, (0Q2)
where N (&) is the unit outward normal to 02 at &.
t(-) is the unique solution of |Vt(x)| = 1 in B, (0Q).
witht =0 o0n 9, 0t/dN > 0 on 9K2.
Extending the normal field N to a neighborhood of 9€2 by
NE+INE)=NE) —r <t <,

we have N(x) = gradt(x)on B.(0R2). Also K(x) = DN(x)= D%t(x), re-
stricted to the tangent space at v € d€2, is the curvature of 9€2. It is sometimes
convenient to call K (x) the curvature, though it is degenerate (K (x)N (x) = 0)
in the normal direction.

Remark. The fact that 7(-) has the same smoothness as 92 — does not lose a
derivative, as happens with 7(-) — seems to have been noted first by Gilbarg
and Trudinger [8].

The best (largest) choice of r is ¥ = 1/ max |k|, where k is the sectional
curvature of the boundary in any (tangent) direction at any point of d<2.

Corollary 1.6. A C"-regular region 2 C R" . m > 2, may be represented by
{x|p(x) > O}y where ¢ is C" and |V ¢(x)| = 1 ona neighborhood of 92. In this
case, ¢ is unique on a neighborhood of d€2.

Proof of (1.5). By the inverse function theorem, the C”~' map (.&) >
&4+ tN(E)=xhasaC” 'inverser = r(x). & = m(x), on some neighborhood
of 9€2. On the other hand, for each x € R", & > 5|x — &|? (£ € 9Q2) has a min-
imum and if & is a minimizing point then v — & L 7:(02) sox =& +1N(&)
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for some real r with r = =£dist(x. 922). We show, for some r > 0, that
X =&+ tN().t = £dist(x, 9Q2) has a unique solution & whenever v €
B, (0Q2) so & = m () is the (unique) nearest points.

Suppose Q= {x:¢) >0}, ¢(x)=0=|Ve)>1 and r=1/
sup | D2 (x)|. If dist(x, 92) < i but there are two “nearest points™ & # &,
v =& +IN(), then 1> =& —& +INE)P = & — &7+ 215 — &).
N(&)+ 1% Now ¢(&) = dp(&) = 0= V(&) - (&2 — &) + 1 fy D*p(0E: +
(1 = 08))) - (& — &)*d0 and N (&) = —V¢(&))/|VP(&))]. so for 1| < r

0 < |& — &P =2NE) - (52— &) < |t|sup |D*¢| & — &I < |& — &7,

a contradiction. Thus ¢(-), 7 (-) are well-defined and C"~" on B, (0L2).

Extend N to be constant on normal lines, so N(x) = N(rr(x)) is C"~" on
B, (02). It is clear that 7(x + sN(x)) = r(x) + s when 7(x) and 7(x) + s are in
(—r.r). so

n
D1(x)/0x; = 0;1(x + SN(X)) + 5 Yt (x + 5N ())d; Ny (v).
k=1
Lets = —7(x),80x +sN(x) =m(x) € 02, and note Vi(r(x)) = N(m(x)) =
N (x). Then on B, (02)

9j1(x) = N;j(x) = 1(x) ) Ni(x)d; Ni(x) = N;(x)
k=1
or N(x) = grad r(x). (Observe that K(x)N(x) = dN/IN(x) = 0.) Clearly N
isC" 'sor(-)isC™.

To identify DN (&) = D2t(&) as the curvature of 9§ at &, we may choose
coordinates so 2 is locally {x, > (%)} where /(0) = 0, Dy/(0) = 0and K;; =
32y /0x;0x,;(0) (1 < i, j <n — 1)isthe curvature matrix (on the tangent plane
R~ x 0). It is easy to show N(x) = (0, —1) + (K £. 0) + o(|x]) as x — 0 so
DN(0) = (X)), and the restriction in the tangent plane is the curvature K of
dS2 at 0.

Remark. If S is a C? hypersurface, x € S, the usual existence theory 5], [6]
for first order scalar PDEs says there is a unique C' solution of |V¢| = 1 near
xo with 1 =0,97/dN > 0 on § near xy. It § is not C? (or C"") there may
be no C' solution of this problem. For example if | < p <2,5 ={x:x; =
|x1|p}, there are two “nearest points™ to .x when x; = 0. x> > 0 (near 0) and the
gradient of dist(.x, §) has a discontinuous jump as .x; crosses 0 with x, > 0.

Theorem 1.7. Let T be a compact subgroup of the orthogonal group O(n)
and let 2 C R" be a C"-regular region such that y(2) = Q for all y € T'.
Then there exists C" ¢ :R" — R such that for Q= {x:¢(x) > 0},
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d(x) =0= |Vo(xX)| = 1, and ¢p(y-x) =¢(x) for all y e ' x e R". If 0Q
is at least C2, we may choose such ¢ with |N¢| = 1 on a neighborhood of 9.

Proof. There exists a function ¢y satisfying all requirements except perhaps
[-invariance. Let ¢(x) be the average of y +— ¢(y.x) with respect to Haar
measure in I'; then ¢ is certainly C" and I'-invariant. Further v € Q@ = yx €
Q = ¢o(yx) > 0forall y € I' so ¢(x) > 0 in Q; and similarly ¢(x) = 0 on
92, p(x) < 0 outside Q. On Q. N(x) = —Ve(x)/|Vo(x)| and it follows
easily that N(yx) = yN(x) forx € 9.y € I', so

grad(¢o(yx)) = y(grad ¢o(yx) = —N(x)|grad ¢o(y.x)|

and (averaging with respect to y) |grad ¢ (.v)| = average, |grad ¢o(y.x)| = 1 for
x e dQ. If in fact [Vgy(x)| = 1 near 92, then ¢(x) = ¢o(x) = Edist(x, 92)
near 92 so |Vg(x)| = 1 near 02.

A common technique in analysis is to approximate a given function by
a smooth function, to facilitate calculations, and take limits only at the end.
Similarly we may approximate a given region by smooth regions. If Q& = {x :
¢(x) > 0}isa C,’,’,'”.f region, and ¥ is C"'-close to ¢, we show {x : (x) > O} is
C"-close to 2, that is, it is diffeomorphic to €2 by a diffeomorphism C"'-close
to the identity.

Theorem 1.8. Let ¢ : R" — R be (at least) uniformly C', ¢p(x) =0 =
lgrad ¢p(x)| = 1, Q = {x : p(x) > 0}, and for some a > 0,

1
|¢(x)] = min {; dist(x, 0€2), u} forall x.

The last condition may always be achieved by modifying ¢ away from 0S2. Also,
let ro > 0.

Then there exists €y > 0 such that, if ||[\y — @|lci=0) < €, there is a dif-
feomorphism /#(-, ) : R" — R" supported in B, (02) — ie., h(x, ) =x
when dist (v, 9Q2) > r¢ — such that 21(Q: ) = {x : ¥(x) > 0} and ||h(-. ) —
idpn||ovzy — Oas | — @l o1z, — 0.1 Y is of class C"“ [or C" " or C™
or C”| then {x : ¥(x) > 0} is a C"* [or C"-“" or C™ or C*] regular region,
assuming || — @l < €.

If ¢,v are C"™“" then h(-.¥) is a C"**" diffeomorphism, |[/(-, ) —
idgn||¢cme — 0 as || — @|lcne — 0 and (x. ) = h(x, ) : R" x ¢
(R") — R"is C"™o T,

If ¢, are C"“ then h(-, ) is a C"“ diffeomorphism and (v, ¢) —
hx,y):R'"x C"™* - R" is C"“. As ||y —¢pllcr — 0 with ||y ]|cme
bounded, /(-. ) remains bounded in C”*“ and converges to idgz: in C*/
whenk + 8 < m + «.



