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Preface

The debate over the magnitude and orientation of stress in the lithosphere has
continued for several decades. As a student I was impressed by the seemingly
irreconcilable differences between the high differential stresses required by
models for lithospheric flexure and the low differential stresses found during
hot creep experiments on rock. More recently, in situ stress data from Califor-
nia suggest that the frictional strength of the San Andreas fault is lower than
expected by predictions using the general rock friction law to model shear
stress along fault zones. Other contentious issues concerned the choice of a
reference state of stress, the extrapolation of near-surface measurements to
depth, the origin of platewide stress fields, and the significance of residual
stress. The purpose of this monograph is to acquaint the geoscientist with these
and many other issues associated with the debate over stress in the lithosphere.

My goal is to provide a broad understanding of stress in the lithosphere while
touching some of the specific details involved in the interpretation of stress
data generated by the most commonly used measurement techniques. Although
the discussion of stress measurement techniques lacks a cookbook form, I illus-
trate some of the subtle aspects of the measurements, often drawing upon my
own experience in making stress measurements. Given the breadth of the subject
and a limit on space, I had to strike a balance on several counts. I wrote for the
senior undergraduate or first-year graduate student who has a modest back-
ground in either structural geology or mechanics including an introduction to
stress as a tensor (e.g., Means, 1976; Suppe, 1985). Space limitations meant
that an encyclopedic referencing of literature on the subject was impractical.
Yet, the student will find enough material to easily continue a search for addi-
tional references. I attempted to balance the most recent references with some
time-honored literature. The need for conciseness led to the introduction of
many theories with the assumption that the student would return to the original
reference for a complete development of the concepts. Nevertheless, some the-
ories are treated in detail according to the following outline.

An understanding of stress in the lithosphere starts with an introduction to
nomenclature based on three reference states of stress (chap. 1). Chapters 2
through 4 cover the role of rock strength as a governor for stress magnitude.
Stress regimes in the lithosphere are identified according to the particular fail-
ure mechanism (crack propagation, shear rupture, ductile flow, or frictional
slip) which controls the magnitude of stress at a particular time and place in the
lithosphere. After introducing the various stress regimes, their extent in the
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upper crust is demarcated by direct measurements of four types: hydraulic-
fracture; borehole-logging; strain-relaxation; and rigid-inclusion measure-
ments (chaps. 5 through 8). The relationship between lithospheric stress and the
properties of rocks is then presented in terms of microcrack-related phenomena
(chap. 9) and residual stress (chap. 10). Chapter 11 deals with lithospheric
stress as inferred from the analysis of earthquakes. Finally, lithospheric stress
is placed in the context of large-scale stress fields and plate tectonics (chaps. 12
and 13).

Terry Engelder

Boalsburg, PA
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List of Symbols

The following lists the symbols used in this book. Their order is alphabetical
using the Latin and then Greek alphabets. The equation in which the symbol
first appears or is first defined is given in brackets unless otherwise indicated.

A area [2-26]; o, 11 __21:) [5-20]; real area of contact [11-3]

a variable [6—10]; constant [11-3]

b half length of the short axis of a crack [2-1]; variable [6—11]

b the Burgers vector [4-10]

Ci stiffness tensor® [1-11]

G uniaxial compressive strength [3-12]

c half length of the long axis of a crack [2—1]; variable [6—12]; half
length of the slot [8-2]

Co half length of a flatjack [8—5]

D average displacement along the faulted area [11-7]; flexural rigid-
ity [13-27]

D, normalized deviatoric tensor [3-35]

d grain diameter [4—15]; variable [6—13]; lateral distance in litho-

sphere [13-1]

Young’s modulus [ 1-10]; total work (energy) during an earthquake
rupture [11-10]

Young’s modulus of a rock containing joints [2-31]

Young’s modulus of the borehole inclusion device [8—1]

Young’s modulus of the host rock [8-1]

energy dissipated as seismic waves [11-11]

shear force [11-4]

components of force on lithospheric plates [ 13-9]

normalized stress intensity function [5-12]

energy release rate per unit length of crack tip [2-20]

critical energy release rate per unit length of crack tip [2-24]
gravitational acceleration [1-17]; normalized stress intensity func-
tion [5-12]

activation enthalpy [4-2]

topographic relief [13-19]

material constants [3—16]

normalized stress intensity functions [5—12]
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unit tensor [3-35]

subscripts’ [1-5]

angle of emergence [11-1]

stress intensity factor [2—16]

fracture toughness [2—18]

diffusivity constant (cm?/sec) [7-22]

ratio of S, to S, [1-15]

mean of a data set of orientation data [12—1]; mass per unit area of
a column of oceanic lithosphere [ 13-2]

bending moment [13-24]

seismic moment [11-8]

normal force [11-3]

amount of a substance [2-5]

unit vector normal to the fault plane [3-41]

breakdown pressure [5-9]

confining pressure [ 1-13b]; radial pressure [7-19]

crack closure pressure [9-3]

fluid pressure inside a borehole [5-6]

wellbore pressures at which horizontal fracture initiation is pre-
dicted [5-23]

wellbore pressures at which vertical fracture initiation is predicted
[5-24]

crack driving pressure [2—15]

flatjack pressure [8—7]

pressure in the lidaosphere [13-12]

magma pressure [1-13a]

pore pressure [ 1-43]

fracture reopening pressure [5—13]

fluid inclusion trapping pressure [2-27]

penetration hardness measured at unit time [11-3]

rock stress parallel to the flatjack [8—4]

gas constant [2-5]; the stress ratio [3—-36]; radius of a borehole [5—
1]; radium of curvature [13-21]

the stress ratio [3-50]

radius of the earth [13-17]

least stress ratio, S, /S, [chap. 5]

distance from the crack tip [2—16]; distance between dislocations
[4-10]; distance from the center of a borehole [5—1]; characteristic
length associated with the narrowest dimension of the fault [11-7]
radius of curvature [2—1]

stress tensor [3-32]

actual stress under grain contacts with a crack or container wall
under dry conditions [ 1-45]
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average rock stress normal to a crack or container wall under dry
conditions{ 1—45]

maximum horizontal stress [ 1-13]

effective maximum horizontal stress [6—16]

minimum horizontal stress [1-13]

horizontally induced thermal stress [1-22]

stress concentration at the end of a borehole [7—-17]

radial profile of normal stress across the plane of the fracture [5-18]
rock stress normal to the flatjack [8-2]

reduced stress tensor [3-44]

circumferential stress tangent to the edge of an elliptical crack [2—1]
vertical stress [ 1-23]

vertical stress at the borehole wall [5-23]

slip lineation vector [3—45]

standard deviation of a data set [ 12-3]

temperature [ 1-22]; the travel time of the P-wave [11-1]
amplitude of surface temperature variation [7-24]

elastic thickness of the lithosphere [13-27]

temperature of the mantle [ 13—6]

initial temperature [1-22]; uniaxial tensile strength [2—11] mean
annual surface temperature [7-24]

surface temperature [ 1-22]

temperature variation at depth [7-22]

torque generated by a lithosphere plate [13—8]

period (seconds) [7-22]; time of maximum annual surface temper-
ature [7-241]; time of contact [11-3]

unit vector associated with T [3—43]

strain energy [2-6]

strain energy due to an external load [2—12]

strain energy due to crack wall displacement [2—-13]

surface energy [2—-6]

total energy [2-5]

displacement [7—10]; velocity of spreading from midocean ridge
[13-6]

crack wall displacement [2-28]

volume [2-5]

volume of flowback {fig. 5-5]

work is done by the fluid in the crack to move the crack wall [2—13]
half displacement caused by raising jack pressure [8-5]

work on rock surrounding the rock-crack system [2—6]

work on expansion of a gas [2-5]

half displacement across open flatjack slot [8-6]

half displacement during flatjack slot cutting [8—2]
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half displacement due to finite slot width [8-3]

half displacement due to biaxial stress around a flatjack slot [8—
4]

change in depth of isotatic compensation due to erosion [ 1-18]; the
dislocation strain energy per unit length in the grain volume [4—18]
crack modification factor [2—17]

subscripts representing orthogonal coordinates with z vertical for
faults [fig. 1-3] or for vertical joints [fig. 2-2]

distance of measuring pins from the major axis of a flatjack slot
(8-2]

half width of the slot [8-3]

thickness of the lithosphere [ 1-19]

depth within the earth [1-17]; thickness of eroded lithosphere [1—
18]

Biot’s poroelastic parameter [ 1-49]

volumetric thermal expansion coefficient of the mantle [13-5]
linear thermal expansion coefficient [pe/°C) [1-22]
compressibility [1-14]; pore pressure coefficient [5-22]

the bulk compressibility of the solid with cracks and pores [1—
49]

intrinsic compressibility [1-49]

cosine between fault and stress tensor coordinate systems [3—
37]

free surface energy per unit surface area [2—10]; latitude relative to
pole of rotation [13-7]

the dislocation strain energy per unit area in the grain boundary [4—
8]

engineering shear strain [4—14]

symbol for differentiation [1-14]; the distance in degrees from the
recording station to the epicenter [11-1]

absolute magnitude of the difference between the formation pore
pressure, Pp, and the borehole fluid pressure [6-3]

volumetric strain [1-4]

stress change in the host rock [8—1]

stress change in the rigid-inclusion gauge [8-1]; stress change in a
grain [10-6]

change in horizontal stress as a consequence of lithospheric thin-
ning {1-21]

shear stress drop during stick slip [11-2]

dip of a fault plane

Kronecker delta* [1-43]
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deviatoric stress® [ 1-41]

strain” [1-1]

strain in the intrinsic rock (i.e., the uncracked solid) [9-4]

strain rate [4-2]

a steady-state creep rate [4-2]

Lame’s constant which is also called the modulus of rigidity [1-1] and
the shear modulus [4-10]

cumulative crack strain [9-14]

total crack porosity [9-17]

seismic efficiency [11-11]

strain due to the presence of cracks [9-4]

angular distance in polar coordinates [2—16]

angle from plane of crack [2-39]; angle between 6, and normal to a
plane [3—4]; angle measured clockwise from Sy at a borehole [5-1]
bulk modulus [1-14]; the angles between 6, and the normal to the
e-twin plane [4—6]; thermal diffusivity of the lithosphere [13-6]
Lame’s constant [1-1]; rake of the slip lineation on a fault; angle
between ¢, and the normal to the slip plane [4—1]

critical slip distance [11-6]

initial coefficient of sliding friction [11-6]

coefficient of dynamic friction [11-2]

coefficient of static friction [3-24]

static friction coefficient at unit time of contact [11-5]

coefficient of internal friction [3-2]

microstrain [7—1]

Poisson’s ratio [1-12]

total crack spectra [9-8]

density of the overburden [1-17]

spatial density of cracks [2-35]

the steady state dislocation density in the grain volume [4—18]
density of lithosphere [1-18]

density of mantle [1-18]

density of water [13-2]

Surface traction [3—41]

critical effective stress for crack propagation [2—11]

applied stress * [1-1]; total stress * {1-44]

effective stress * [1-43]

differential stress [1-40]

differential stress in the horizontal plane [5-27]

steady-state flow stress [4-2]

excess stress [ 1-32]

cement stress just after cementation [10-5]

intragranular stress after cementation [10-5]
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(j\}h average horizontal stress in the lithosphere [1-19]

c, average horizontal stress in a thinned lithosphere [1-20]

‘o5 stress in the vicinity of a crack tip-[2—16]

Cin internal stress within the host grain [4-9]

O, lithostatic stress in the mantle [ 1-19]; mean stress [ 1-42]

c, normal stress [3-2]

C, radial stress near a borehole [5-1]

Oy circumferential stress tangent to a borehole [5—1]

G, tectonic stress added to the uniaxial-strain reference state
[1-30]

o tectonic stress added to the lithostatic reference state [ 1-29]

T shear stress [3-2]; shear stress from viscous drag [13-1]

T shear traction on a fault plane [3—42]

T, average stress along the fault [11-10]

T, critical resolved shear stress [4—1]

T shear stress on a fault plane after an earthquake rupture [11-10]

T, shear stress on the fault plane before an earthquake [11-10]

T maximum shear stress [3-13]

T, cohesion of the material [3-2]; cohesive strength of a fault zone
[3-25]

Toct octahedral shear stress [6—1]

T, resolved shear stress [4—1]

T shear stress near a borehole [5-3]

(0] rock porosity [1-46]; angle of internal friction [3—15]; angle be-
tween o, and the slip direction [4—1]

0, the angle measured in the counterclockwise direction from the 6 =
0° axis of the strain rosette [7—6]

o) relative magnitude of stress [3—42]; crack aspect ratio [9-3]

X the angle between o, and the e-twin glide line [4-6]; material prop-
erty [10-13]

Q, cosAcos¢ [4—1]
#—Subscripts have ranges from one to three: i, j, k,1=1, 2, 3.
Kronecker delta 6, is defined as § — 1, 1 =J:

YoL0,1#] |

Einstein summation convention is followed. Repeated indices in any single
term mean that the term is to be summed over the full range of the term. For
example, G; = 0;;X; + O;X, + 03X



