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Preface

Threshold graphs have a beautiful structure and possess many important
mathematical properties such as being the extreme cases of certain graph
properties. They also have applications in many areas such as computer
science and psychology. Their many characterizations can be relaxed in dif-
ferent directions to obtain new and important classes of graphs. For this
reason, interest in these graphs gained momentum during last 20 years. In
1980, Golumbic devoted a chapter to them in his book Algorithmic Graph
Theory and Perfect Graphs [Gol80]. Since then many new results related
to this topic were discovered, and by now more than 100 articles have been
published in various fields. Even as we started to write this book, significant
results were discovered as late as this summer. We believe that this subject
will continue to attract much attention and there is a need for a coherent
presentation of the existing results to serve as a reference.

In writing this book, we unified several scattered results and rewrote some
proofs, occasionally giving new ones. Because of space considerations we
could not include every result related to threshold graphs, and we had to ex-
ercise our personal bias. In particular, we cover very little from the vast fields
of hypergraphs and Boolean functions. This book is self-contained, except
for very few places where we use known results from the literature. However,
some chapters assume general background from linear programming or com-
plexity theory. We tried to organize the book as much as possible so that
every chapter could be studied independently after Chapter 1 and in some
cases Chapter 2. Occasionally, we repeated some definitions for the conve-
nience of the reader. We included many open problems and research ideas
to make the book attractive to graduate students and researchers interested
in graph theory.

We typeset this book using WTEX 2¢ under emTRX, and we thank Eber-
hard Mattes for making the excellent emTEX system available to the general

vii



viii Preface

public. The pictures were prepared with a combination of TEXCAD and
P[CTEX. These tools enabled us to produce a camera-ready copy very easily
and efficiently.

Several people read parts of the manuscript and gave valuable comments.
They include Waleed Al-Jasem, Srinivasa Arikati, Chris Brown, Kristine
Cirino, Yee-Hong Lui, Francois Margot, Thomas Raschle, Ron Shamir, An-
drea Sterbini, and Julin Wu. We owe them a debt of gratitude for their
help. We are grateful for the kind support of the Swiss Federal Institute of
Technology in Lausanne for inviting the first author to give seminars on the
topics of this book, and of the Department of Mathematics at Northeastern
University and the Mathematics, Statistics, and Computer Science Depart-
ment of the University of Illinois at Chicago for enabling us to spend time
together to accomplish what was not possible with e-mail alone. We thank
Arjen Sevenster of Elsevier Science for his help in publishing this manuscript.
Special thanks are due to Peter Hammer, who introduced both of us to the
subject of threshold graphs, invited us to write this book and encouraged us
throughout this project.

Our deepest thanks go to our wives Aparna and Ofra and our children
Maya, Shilpa, Tsoni and Benny for their sacrifices and endurance through
all these long years. Without their constant love and support we could not
have completed this undertaking.

June 1995
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Basic Terminology

We present here the basic terminology and notations used throughout the
book. Additional definitions and notations are introduced in the book as
needed.

For sets A and B, A C B indicates that A is a subset of B, whereas
A C B indicates that A is a proper subset of B. Let C be a collection of
sets. A set A € C is mazimum if |A| > |B| for all B € C and minimum if
|A| < |B] for all B € C. The collection C is nested if for every two sets in C,
one is a subset of the other.

A poset (partially ordered set) is a pair (P, >), where P is a set and > is
a reflexive, antisymmetric and transitive relation on P. If 2 > y and z # y
hold, we write z > y. If # > y or y > z, z and y are comparable. Otherwise, =
and y are incomparable, and we denote this condition by z || y. A poset with
no incomparable elements is said to be total. A chain is a set of mutually
comparable elements, and an antichain is a set of mutually incomparable
elements. The Dilworth Theorem states that the largest cardinality of an
antichain equals the smallest cardinality of a set of chains partitioning P.
An element z is mazimal if there is no element y such that y > x. Similarly,
x is minimal if there is no element y such that z > y. An element z covers
an element y if * > y and there is no z such that z > z > y. The Hasse
diagram of a finite poset is a drawing where each element is represented by
a point, and if = covers y, = is drawn above y and is joined to it by a line.

A preorderis a pair (P, 2), where P is a set and 2 is a reflexive, transitive
relation on P. If # 2 y and y 2 x, we denote this condition by z ~ y. If
x 2y and y 2 x, we denote this condition by z > y. The terms comparable,
incomparable, total, chain, antichain, and maximal and minimal element
are defined for preorders as for posets, and the Dilworth Theorem carries
through.

The set of real numbers is denoted by R, and we put R* = {z e R: z >



2 Basic Terminology

0} and R = {z € R:z > 0}.

For a real-valued function f, we use the notation

f(8)=2>_ f(s).
SES
A function f : {0,1}* — {0,1} is called a Boolean function. For reals
ai,...,a, and t, the Boolean function f defined by

n
flzr,...,20) :O@Zaixi <t
i=1
is called a threshold function.

The support of a vector (zi,...,z,) is the set {¢ : z; # 0}. If S C
{a1,...,a,}, then the characteristic vector of S is the vector (z1,...,z,)
given by

{ 1, ifa; €8
r; =

0, otherwise.

For a real z, |z| denotes the largest integer ¢ < x and [z] denotes the
smallest integer © > z.

A graph G is an ordered pair (V, E), where V = V(G) is a set of elements
called vertices, E = E(G) is a set of elements called edges, and each edge
is an unordered pair of vertices (its ends or end-vertices or end-points). If
the two ends are the same, then the edge is called a loop. Note that we do
not allow parallel edges, i.e., all edges are distinct. The graph is said to be
finite if V is a finite set. Unless otherwise indicated, all graphs considered
from now on are finite and loopless. A graph with n vertices and e edges is
referred to as an (n,e)-graph.

An edge with ends a,b is denoted by ab. Two vertices a and b are ad-
jacent (or neighbors) if ab is an edge, and non-adjacent (or non-neighbors)
otherwise. In the latter case, ab is a nonedge. If a vertex is an end of an
edge, then they are incident. Two edges are adjacent if they share a common
end. The adjacency matriz (a;;) of a graph is defined by

~_J 1, if the i-th and j-th vertices are adjacent
%=1 0, otherwise.

Similarly, the edge-vertez incidence matriz (b;;) is defined by

b — 1, if the 7-th edge and j-th vertex are incident
Y71 0, otherwise.
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The neighborhood Ng(v) of a vertex v in a graph G is the set of all
neighbors of v, and its closed neighborhood is Ng[v] = Ng(v) U {v}. When
G is understood, we omit the subscript G. For subsets A and B of V,

Na(w)=N@)nA,  NaB)= |J Na(v).

vEB

Similarly, N(v) denotes the set of all non-neighbors of v, and N 4(v) = N(v)N
A. A vertex is isolated if its neighborhood is empty, and is dominating if its
closed neighborhood is the entire set of vertices. We define a binary relation
~on V by a2 b <= Nl[a] DO N(b). This relation is a preorder and is called
the vicinal preorder of G.

A graph H = (W, F) is a subgraph of G = (V,E) if W CV and F C E.
We then say that G contains H. If W =V, then H is a spanning subgraph
of G. If F' is the set of all edges in £ with both ends in W, then H is the
subgraph of G induced by W, and is denoted by G[W]. The set of edges of
G[W] is denoted by E(W). Similarly, if W is the set of all ends of edges in
F, then H is the subgraph induced by F. Also, G — W = G[V — W] and
G-F=(V,E-F).

Two graphs Gy = (Vi, Ey) and Gy = (V, E;) are isomorphic if there is
a bijection f : Vi — V, such that for all a,b € V; we have ab € E, <—
f(a)f(b) € E,; in other words, G and G, are two labelings of the same
graph. We denote this condition by G7 ~ G,. A property of graphs that is
preserved under isomorphism is called a graph property. A graph property P
is hereditary if, whenever a graph has property P, all its induced subgraphs
also have property P.

The degree of a vertex v is deg(v) = |N(v)|. The degree sequence of a
graph with vertices vy,...,v, is d = (deg(v1),...,deg(v,)). Every graph with
the degree sequence d is a realization of d. A degree sequence is unigraphic
if all its realizations are isomorphic. It is strongly unigraphic if there is
a unique graph (V, E) with V. = {1,...,n} and deg(z) = d; for all 2. A
graph is a unigraph if its degree sequence is unigraphic. A strong unigraph
is defined similarly. For a graph property P, a degree sequence is potentially
P-graphic if it has a realization with property P, and forcibly P-graphic if all
its realizations have property P. The degree of an edge is the unordered pair
of degrees of its ends. The terms edge-degree sequence, edge-unigraph etc. are
defined similarly. For more information on degree sequences, see [TCC88a,

TCC88b, TCCS9, Rao8l].
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The complement of a graph G = (V, E) is the graph G’ = (V, F) such
that ab € F' <= ab ¢ E for each pair a,b of distinct vertices. The graph
G = (V,E) is edgeless if E = @. The complement of an edgeless graph is a
complete graph. A subset W of V is a stable set (or an independent set) if
G[W] is an edgeless graph, and is a cligue if G[W] is a complete graph. A
k-clique is a clique of size k. A proper coloring (or simply a coloring) of G
is a partition of V into stable sets, called color classes. A clique partition of
(i is a partition of V into cliques. The size a(G) of a maximum stable set is
the stability number of G, the size w(G) of a maximum clique is the clique
number of (G, the size x(G) of a minimum coloring is the chromatic number
of GG, and the size k(G) of a minimum clique partition is the clique cover
number of GG. A subset W of V is a vertex cover if V. — W is a stable set.
The size p(G) of a minimum vertex cover is the vertez cover number of G.

A path P, is a graph of the form (V,E), where V = {1,...,n} and
E ={12,23,...,(n — 1)n}. We say that P, is a path joining 1 and n. For
n > 3, a cycle C, is a graph of the form (V,FE), where V = {1,...,n}
and £ = {12,23,...,(n — 1)n,nl}. A graph G is connected if for every
two vertices a and b, G contains a path joining @ and b; G is disconnected
otherwise. A maximal connected subgraph of a graph (with respect to graph
containment) is a connected component. A graph G is 2-connected if every
two vertices belong to a cycle of G. A maximal 2-connected subgraph is a
block.

A matching in a graph is a set of mutually non-adjacent edges. A vertex
is saturated by a matching if it is an end of one of its edges, and is unsaturated
(or missed) otherwise. A matching is perfect if it saturates every vertex of
the graph.

A bipartite graph is a 2-colorable graph. We indicate a 2-coloring of a
bipartite graph by (A, B; F), where A and B are the color classes and £ is
the set of edges. Hall’s Theorem states that a bipartite graph (A, B; E) has
a matching saturating every vertex of A if and only if every subset X of A
satisfies | X| < [N(X)|.

The union of graphs Gy = (V4, E1) and Gy = (Va, E3) is the graph Gy U
Gy = (V1 U Vo, By U Ey). If Vi and V, are disjoint, we call this a disjoint
union. When V; and V, are disjoint, the join of G and G, is the graph
G1® Gy = (ViUV,, By U EyU Ery), where Eys is the set of all unordered pairs
consisting of a vertex of V; and a vertex of V5.

Let H be a fixed graph. A graph is H-free if it contains no induced
subgraph isomorphic to H. The disjoint union of m copies of H is denoted by



