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Preface

The study of the Quaternary period has expanded over the last twenty years from an
insignificant part of geology (the ‘Ice Age’) to an important multidisciplinary
activity. It is now an indispensable part of geomorphology, climatology, archaeo-
logy, soil science, plant and animal ecology, oceanography and mineral exploration.
In return these and other subjects, such as astronomy, have had significant impacts
upon our understanding of events during the last few million years, especially in
clarifying the rapid changes of climate, sea level, soil and vegetation characteristics,
and the associated animal and human migrations.

In recent years there has also been an increasing awareness of the economic
significance of Quaternary studies. A major focus is now the prediction of future
climatic and climate-related environmental changes. This has demonstrated very
clearly the value of the multidisciplinary approach to Quaternary studies, because
changes in the earth’s orbit and processes operating in the atmosphere, oceans,
glaciers and biosphere (including soils and human activities) all seem to be involved
in the working of a very complex natural system determining climate.

Because of its multidisciplinary nature, Quaternary science is hardly ever
adequately taught. For example, in Britain there are at present only two MSc/MPhil
courses in Quaternary studies, one taught at Cambridge University and the other run
jointly by City of London Polytechnic and North-east London Polytechnic, and only
one university sub-department (part of the Botany School at Cambridge) conducts
multidisciplinary research into Quaternary history. Restricted aspects of the Qua-
ternary are included in many undergraduate courses in archaeology, physical
geography, botany and soil science, but the subject is rarely accorded more than a
few lectures in geology courses. From an educational viewpoint this is pity, because
the Quaternary is useful for relating geological principles to other sciences. In terms
of practical training for a geologist it is a disaster, because almost all practising
geologists soon encounter Quaternary deposits in the field, and then realize that they
are often much more variable in lithology and thickness than pre-Quaternary
deposits. Failure to recognize Quaternary features can lead, for example, to
misunderstanding of surface outcrops or misinterpretations of borehole information.
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The purpose of this book is to explain the effects of Quaternary processes of
erosion, deposition and soil development, so that practising geologists can recognize
and interpret them correctly. Methods of classifying, correlating, mapping and
dating Quaternary deposits are described, and the useful interrelations with other
disciplines involved in Quaternary studies are explored. The wide range of analytical
laboratory techniques applicable to Quaternary deposits cannot be described in
detail, but their uses and limitations are discussed so that the field geologist can
decide when it is worth calling upon the services of an expert analyst.

The book was written at the suggestion of colleagues in the Institution of
Geologists, the organization representing professional geologists in Britain. It is
intended primarily for this readership, but will I hope be read and used by practising
scientists and engineers from a much wider range of backgrounds, anyone in fact who
feels that a knowledge of the immediate geological past with its climatic vicissitudes
might help resolve present or future problems.

I wish to thank Jeremy Joseph for encouraging me in the preparation of the book,
Mrs Patricia Ashcroft and Mrs Joyce Munden for drawing many of the figures and
Miss Jeanette Gooding for typing the manuscript. Among the many publishers and
authors who have readily given permission for reproduction of their figures, I thank
especially Professor Hans Jenny, who kindly allowed me to use many graphs from his
book Factors of Soil Formation (McGraw-Hill, 1941), namely Figs 3.12 to 3.20.
Harpenden John A. Catt
February 1988
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Nature of the Quaternary period

1.1 INTRODUCTION

For many geologists the Quaternary is the most recent part of geological time, when
glaciers deposited chaotically mixed deposits in mid-latitude regions which now have
temperate climates. Though broadly true, this is a considerable over-simplification,
because in these regions the climate fluctuated between cold and temperate many
times, with the result that some areas were glaciated repeatedly.

By both deposition and erosion, glaciations greatly modified land areas and many
shallow shelf seas. Also beyond the ice margins land areas were much modified by
periglacial processes of aeolian deposition, slope erosion and frost disturbance.

single channel gelifluction lobes
B. on hillsides

river

thick soil Jacier
mantle 9

frost-shattered @ .,
outcrops of \ ‘ g
e
4 /

thin soil
mantle

deciduous
forest

harder rocks

multi-channel
outwash stream

herbaceous vegetation
in damp areas only

Fig. 1.1 — Typical warm (A) and cold (B) stage landscapes of mid-latitude regions during the
Quaternary.

During the cold periods the proportion of land to sea was increased, as the
incorporation of large amounts of water into glaciers lowered the sea-level world-
wide. In contrast, the intervening warm periods or interglacials were times of high



12 Nature of the Quaternary period [Ch.1

sea level, decreased land areas and greatly diminished deposition and erosion (Fig.
1.1).

)Because the interglacial land surfaces were stable, usually under a forest cover,
soils developed beneath them, often to depths of several metres. The physiography
of the present land surface, the soils beneath it, and modern natural floral and faunal
assemblages were all determined by events and processes in later parts of the
Quaternary. So, although the climatic fluctuations and their various effects are
usually grouped together as “Quaternary geology”, this discipline is distinctly
multifaceted, and includes aspects of meteorology, zoology, botany, pedology and
geomorphology. It also embraces anthropology and archaeology, because the
appearance of man as a toolmaker was a Quaternary event in most parts of the world,
and stages in his subsequent development are useful to some extent for dating
purposes. In addition, applied aspects of Quaternary studies are important in civil
engineering, mineral exploration and agriculture.

1.2 THE EVIDENCE OF CLIMATIC CHANGE FROM OCEANIC DEPOSITS

Croll (1864) was the first Quaternary geologist to suggest that sediments on the deep
ocean floors would provide the most complete palaeontological record of past
climatic changes. However, this potential was not realized until sediment cores could
be retrieved with the piston corer, and methods were developed for evaluating and
dating climatic changes. In the first oceanic cores to be examined, climatic changes
were determined from the relative abundance of individual foraminiferal species
indicating warm or cold surface water; the layers containing them were dated by the
radiocarbon method (see 5.2), and by extrapolation assuming constant sedimen-
tation rates of 1-3 mm per century for horizons beyond the range of this dating
method. Later, multifactorial methods of estimating water temperature from
assemblages of foraminifera (Imbrie and Kipp 1971) and other microfossil groups
were developed, and some older horizons were dated by the palacomagnetic method
(see 5.10).

The method of determining palaeotemperatures from 20/'®0O ratios in foramini-
fera (Emiliani 1955) gave similar results to the multifactorial methods, but usually
indicated larger temperature changes; for example, foraminiferal assemblages
indicated a fall of 2°C in the temperature of Caribbean surface waters at the
beginning of each cold stage, but the isotopic measurements suggested a 6°C drop.
Shackleton (1967) showed that the difference results from the concentration of 10
relative to 30 in the ice of glaciers, so that most of the isotopic variation is caused by
differences in the total volume of glaciers on the earth’s surface, and only a small part
results from the local water temperature component. Originally planktonic foramini-
fera were used for oxygen isotope measurements, because they were thought to show
the effects of both these components. However, their isotope ratios are also affected
by differences in surface salinity and other factors. More recently benthic species
have been used instead, because they avoid these problems, and were thought to
provide a purer record of changes in global ice volume, as the deep ocean should be
less affected by temperature changes than the surface waters. However, Chappell
and Shackleton (1986) showed that even the deep waters of the Pacific Ocean varied
by about 1.5°C during the later Quaternary.
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During cold periods the glaciers were enlarged quite slowly, but they melted and
decreased in size more rapidly at the beginning of warm periods, so the curves for
change in the oxygen isotope ratio with time have a typical saw-tooth shape. The
alternating cold and warm stages are conventionally given arabic numerals working
backwards in time from the present (stage 1), and the steeper parts of the saw-tooth,
known as ‘terminations’, are identified by capital roman numerals, again working
backwards in time from Termination I at the Pleistocene/Holocene boundary
(Broecker and Van Donk 1970).

Emiliani (1955, 1966) originally recognized 16 oxygen isotope stages in sediment
cores from the Caribbean Sea and Atlantic Ocean. Shackleton and Opdyke (1973)
analysed another core (V28-238) from the western equatorial Pacific, and recognized
22 stages over the last 800000 years, the first 16 of which were similar to those of
Emiliani. A stratigraphically longer core (V28-239), also from the Pacific, extended
the succession continuously back to 2.1 million years ago (Shackleton and Opdyke
1976); this showed that over the last 1.5 million years there have been at least 17
major cold periods separated by warmer episodes (Fig. 1.2). Similar complex
successions have been established in other cores from the Atlantic Ocean (e.g.
V16-205, Fig. 1.2) and Indian Ocean, so there is no doubt that the numerous changes
recorded were worldwide in effect. Cores covering even longer periods of time show
that the climatic fluctuations extended well back into the Tertiary. Large glaciers first
affected oxygen isotope ratios in the north Atlantic and Pacific about 3.2 million
years ago (Shackleton and Opdyke 1977), though it is thought that small mountain
glaciers began forming in the northern hemisphere in the late Miocene (10 million
years ago). The Antarctic ice cap has also existed for at least as long as this, and even
may have begun forming in the early Oligocene about 38 million years ago (Mercer
1983).

As well as the micropalaeontological and oxygen isotope record of Quaternary
climatic change, it is also possible to use the calcium carbonate content of deep ocean
sediments as a palaeoclimatic indicator. This is because during cold stages lower sea
surface temperatures depressed biological productivity of calcareous plankton, and
ice-rafted clastic material diluted any carbonate precipitated from the water.
Analyses of several Atlantic cores have shown that the three methods give approxi-
mately similar results. A sudden strong decrease in the carbonate content of some
north Atlantic cores, such as S52A (Shackleton et al. 1984), in the late Pliocene about
2.4 million years ago suggests this was a time of increased ice rafting of clastic
sediment, and therefore of increased continental glaciation in N. America and
Europe.

1.3 CAUSE OF THE CLIMATIC CHANGES

Many different theories have been put forward to explain why the Quaternary was
generally much colder than most earlier periods of geological time and why the
climate fluctuated from cold to warm in many parts of the world. The earlier of these
were summarized by Charlesworth (1959, p. 1532), but most are not worth repeating
because the evidence from deep sea cores has recently shown that one particular
theory (the astronomical theory) can account for most of the climatic change inferred
from oceanic successions. In the nineteenth century, pioneer workers such as Croll
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Fig. 1.2 — Oxygen isotope curves for oceanic cores covering long periods of Quaternary time
and drawn to a common time scale (from Shackleton and Opdyke 1973, 1976 and Van Donk
1976). Originally published in part by Geological Society of America.

(1864, 1867) suggested that various perturbations of the earth’s orbit around the sun
affect the amount of solar radiation it receives and thus influence its climate. These
insolation changes are related to cycles with periods of approximately 19 000, 23 000,
41000 and 100000 years, resulting from changes in the longitude of perihelion
(precession of the equinoxes), the earth’s obliquity (tilt of the axis of rotation relative
to the plane of the orbit) and the eccentricity of the orbit (Lockwood 1980). Later
Milankovitch (1920, 1930) calculated radiation curves for various latitudes, and
although his results suggested dates for Quaternary ice ages very similar to those
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estimated previously for alpine areas by Penck and Briickner (1909), the theory was
soon abandoned by most Quaternary geologists.

However, improved dating of the oxygen isotope changes in foraminiferal tests
from deep ocean cores allowed Hays et al. (1976) to match cyclic changes in the
isotope ratio with insolation changes at 65°N attributable to three of the four orbital
cycles over the past 468 000 years, using frequency or spectral analysis (Fig. 1.3). This
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Fig. 1.3 — Variations in orbital data (precession, obliquity and eccentricity) for the last 500 000

years (dotted lines, from Vernekar 1972) compared with frequency components of climate

derived from 8'®0 variations (from Hays et al. 1976). The curves for 6'80 for precession and

obliquity are frequency components extracted by digital band-pass filters; that for eccentricity is

the original unfiltered curve. The two sets of curves for precession and obliquity are for

alternative time scales based on different interpolations between dated horizons in selected
sediment cores.
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led to a revival of the astronomical theory for climatic change, though it seems
unlikely that there is a direct relationship between orbital cycles and climatic change
because the maximum difference in total insolation over the last million years has
been <0.6%. Imbrie et al. (1984) reported further evidence for a close relationship
between orbital cycles and isotopic changes which enabled them to present a revised
chronology for isotopic stage boundaries in core V28-238 over the past 780 000 years.
Their dates are given in Table 1.1. Spectral analysis of the oxygen isotope ratios and

Table 1.1 — Revised dating of oxygen isotope stage boundaries in core V28-238
(from Imbrie et al. 1984)

Oxygen isotope stage boundary Revised dating
in V28-238 (years B.P.x10%)
172 12
2/3 24
3/4 59
4/5 71
5/6 128
6/7 186
718 245
8/9 303
9/10 339
10/11 362
11/12 423
12/13 478
13/14 524
14/15 565
15/16 620
16/17 659
17/18 689
18/19 726
19/20 736
20/21 763
21/22 790

carbonate content in dated Atlantic cores has shown that the climate of approxi-
mately the last 600 000 years has been dominated by the 100 000-year cycle related to
orbital eccentricity. However, before about 600000 years ago the 41000-year tilt
cycle dominated the climatic fluctuations. The change at approximately 600 000 years
ago also led to stronger glaciations, which is puzzling because the 100 000-year cycle
has an even weaker effect on insolation than the 41 000-year cycle. The increased
glaciation may therefore have been related to rapid uplift of mountain ranges in Asia
and western America at this time; the elevated surfaces would have extended the



