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PREFACE

This book is a revision of the fifth edition, published in 1990. That edition has served,
just as the first four editions did, as a textbook for a one-term introductory course in
the theory and applications of functions of a complex variable. This edition preserves
the basic content and style of the earlier editions, the first two of which were written
by the late Ruel V. Churchill alone.

In this edition, the main changes appear in the first eight chapters. To men-
tion some of the major improvements, the chapter on residues and poles in the last
edition is now divided into two chapters, one on the theory of residues and one on
applications of residues. The applications chapter contains a substantial amount of
new material on the use of residues in finding inverse Laplace transforms, and the
material on indented contours has now been brought out of the exercises and given
more emphasis. This chapter also contains a completely rewritten section on the ar-
gument principle, which was deferred until the final chapter in the earlier editions
of the book. In fact, all of the material in the final chapter of the earlier editions now
appears in various places throughout the present edition. The proofs of Taylor’s and
Laurent’s theorems have been improved, and the development of properties of power
series has been completely revised.

As for certain other improvements, the section on multiplication and division
of power series has been enhanced pedagogically, and the discussion of values and
Cauchy principal values of improper integrals has been made clearer. Finally, exer-
cises appear more frequently, and there is a substantial number of new figures.

As was the case with the earlier editions, the first objective of this edition is to
develop those parts of the theory that are prominent in applications of the subject.
The second objective is to furnish an introduction to applications of residues and
conformal mapping. Special emphasis is given to the use of conformal mapping in
solving boundary value problems that arise in studies of heat conduction, electro-
static potential, and fluid flow. Hence the book may be considered as a companion
volume to the authors’ “Fourier Series and Boundary Value Problems” and Ruel V.
Churchill’s “Operational Mathematics,” in which other classical methods for solving
boundary value problems in partial differential equations are developed. The latter
book also contains applications of residues in connection with Laplace transforms.
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xvi PREFACE

The material in the first ten chapters of this book, with various substitutions
from the remaining chapters, has for many years formed the content of a three-hour
course given each term at The University of Michigan. The classes have consisted
mainly of seniors and graduate students majoring in mathematics, engineering, or
one of the physical sciences. Before taking the course, the students have completed at
least a three-term calculus sequence, a first course in ordinary differential equations,
and sometimes a term of advanced calculus. In order to accommodate as wide a
range of readers as possible, there are footnotes referring to texts that give proofs and
discussions of the more delicate results from calculus that are occasionally needed.
Some of the material in the book need not be covered in lectures and can be left for
students to read on their own. If mapping by elementary functions and applications
of conformal mapping are desired earlier in the course, one can skip to Chapters 8,
9, and 10 immediately after Chapter 3 on elementary functions.

Most of the basic results are stated as theorems or corollaries, followed by ex-
amples and exercises illustrating those results. A bibliography of other books, many
of which are more advanced, is provided in Appendix 1. A table of conformal trans-
formations useful in applications appears in Appendix 2.

Each copy of this new edition will be packaged with a computer diskette con-
taining an abbreviated version of f(z)—The Complex Variable Program, produced
and developed by Lascaux Graphics. This software will allow students to generate
graphs of complex variables in a four-dimensional space without requiring user pro-
gramming. These graphs can be easily rotated in real time, zoomed, and scaled to
permit close and varied examination. Exercises in the text that can be enhanced by
the use of this program are denoted with an asterisk (*). The software is available
for both PC and Macintosh platforms.

Preparation of this revision has been influenced by suggestions from a number
of people. Specifically, there has been considerable input from the following review-
ers: Harry Hochstadt, Polytechnic University; Meyer Jerison, Purdue University;
Fred Rispoli, Dowling College; and Calvin Wilcox, University of Utah.

Constant interest and support have also been provided by Jacqueline R. Brown,
Margret H. Hoft, Michael A. Lachance, Ronald P. Morash, Frank J. Papp, Richard
L. Patierson, and Gene G. Rae, as well as Jack Shira, Maggie Lanzillo, and James
W. Bradley of the editorial staff at McGraw-Hill.

James Ward Brown
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CHAPTER

1

COMPLEX
NUMBERS

In this chapter, we survey the algebraic and geometric structure of the complex
number system. We assume various corresponding properties of real numbers to be
known.

1. SUMS AND PRODUCTS

Complex numbers can be defined as ordered pairs (x, y) of real numbers that are to
be interpreted as points in the complex plane, with rectangular coordinates x and y,
just as real numbers x are thought of as points on the real line. When real numbers
x are displayed as points (x,0) on the real axis, it is clear that the set of complex
numbers includes the real numbers as a subset. Complex numbers of the form (0, y)
correspond to points on the y axis and are called pure imaginary numbers. The y axis
is, then, referred to as the imaginary axis.
It is customary to denote a complex number (x, y) by z, so that

(D z = (x,Y)

The real numbers x and y are, moreover, known as the real and imaginary parts of
z, respectively; and we write

) Re:z = x, Imz = y.

Two complex numbers z; = (xj,y;)and z; = (x3, y;) are equal whenever they have
the same real parts and the same imaginary parts. Thus z; = z; if and only if z; and
2z, correspond to the same point in the complex, or z, plane.



2 COMPLEX NUMBERS CHAP. 1

The sum z; + z and the product z,z; of two complex numbers z; = (x1, y1)
and z; = (x», y2) are defined as follows:

3) (x1,y1) + (x2,¥2) = (x1 + X2, 51 + y2),
4 (x1, y1)(x2, y2) = (x1X2 — y1¥2, y1X2 + X1¥2).

Note that the operations defined by equations (3) and (4) become the usual operations
of addition and multiplication when restricted to the real numbers:

(.XI,O) + (x2r0) = (xl + x270)r
(xlyo)(XZrO) = (xle:O)'

The complex number system is, therefore, a natural extension of the real number
system.

Any complex number z = (x,y) can be written z = (x,0) + (0, y), and it is
easy to see that (0, 1)(y,0) = (0, y). Hence

z = (x,0) + (0, 1)(»,0);

and, if we think of a real number as either x or (x, 0) and let i denote the pure imag-
inary number (0, 1), it is clear that*
(5) z = x+1iy.

Also, with the convention z2 = zz, z> = zz2, etc., we find that

iZ = (0,1)0,1) = (—1,0),

or
(6) ?=-1
In view of expression (5), definitions (3) and (4) become
(7 (x1 +iy1) + (x2 +iy2) = (x1 + x2) + i(y1 + y2),
® (x1 +iy)(x2 +iy2) = (x1x2 = y1y2) + i(y1x2 + x1y2).

Observe that the right-hand sides of these equations can be obtained by formally
manipulating the terms on the left as if they involved only real numbers and by
replacing i2 by —1 when it occurs.

2. ALGEBRAIC PROPERTIES

Various properties of addition and multiplication of complex numbers are the same
as for real numbers. We list here the more basic of these algebraic properties and
verify some of them. Most of the others are verified in the exercises.

*In electrical engineering, the letter j is used instead of i.



