: gement * Andrew P. Sage, Series Editor

Simulation-Based
Engineering of
Complex Systems

| CJ:) -‘R;M
John R. Clymer Iiutm

Hercised.mox

SLExtendSim7Mod
OpEMCSS Y els7

Thru-Put 0.063829787234
#orerage Thru-Put 0.063829787234

Exec
o;)ute Action

Direct
Logic

/
C .
Ezpe-OL
Wit Al
Eﬂ Direct
—

JOB EXECUTION PROCESS

SIMULATION-BASED
ENGINEERING OF COMPLEX
SYSTEMS

Second Edition

JOHN R. CLYMER

Professor of Electrical Engineering College of Engineering and
Computer Science, California*State University, Fullerton

F)WILEY

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise,
except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without
either the prior written permission of the Publisher, or authorization through payment of the
appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests
to the Publisher for permission should be addressed to the Permissions Department, John Wiley &
Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best
efforts in preparing this book, they make no representations or warranties with respect to the
accuracy or completeness of the contents of this book and specifically disclaim any implied
warranties of merchantability or fitness for a particular purpose. No warranty may be created or
extended by sales representatives or written sales materials. The advice and strategies contained
herein may not be suitable for your situation. You should consult with a professional where
appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other
commercial damages, including but not limited to special, incidental, consequential, or other
damages.

For general information on our other products and services or for technical support, please contact
our Customer Care Department within the United States at (800) 762-2974, outside the
United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic formats. For more information about Wiley products, visit our
web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data is available.

Clymer, John R.
Simulation-based engineering of complex systems / JohnR.Clymer. — 2nded.
p. cm.
Includes bibliographical references and index.
ISBN 978-0-470-40129-3 (cloth/CD)
I. System analysis—Simulation methods. 1. Title.
QA402.C5347 2009
620.001°171-dc22
2008036199

Printed in the United States of America

10987654321

WILEY SERIES IN SYSTEMS ENGINEERING
AND MANAGEMENT

Andrew P. Sage, Editor

ANDREW P. SAGE and JAMES D. PALMER
Software Systems Engineering

WILLIAM B. ROUSE

Design for Success: A Human-Centered Approach to Designing Successful
Products and Systems

LEONARD ADELMAN
Evaluating Decision Support and Expert System Technology

ANDREW P. SAGE
Decision Support Systems Engineering

YEFIM FASSER and DONALD BRETTNER
Process Improvement in the Electronics Industry, Second Edition

WILLIAM B. ROUSE
Strategies for Innovation

ANDREW P. SAGE
Systems Engineering

HORST TEMPELMEIER and HEINRICH KUHN

Flexible Manufacturing Systems: Decision Support for Design
and Operation

WILLIAM B. ROUSE
Catalysts for Change: Concepts and Principles for Enabling Innovation

LIPING FANG, KEITH W. HIPEL, and D. MARC KILGOUR
Interactive Decision Making: The Graph Model for Conflict Resolution

DAVID A. SCHUM
Evidential Foundations of Probabilistic Reasoning

JENS RASMUSSEN, ANNELISE MARK PEJTERSEN,
and LEONARD P. GOODSTEIN

Cogpnitive Systems Engineering
ANDREW P. SAGE

Systems Management for Information Technology and Software Engineering

ALPHONSE CHAPANIS
Human Factors in Systems Engineering

YACOV Y. HAIMES
Risk Modeling, Assessment, and Management, Third Edition

DENNIS M. BUEDE
The Engineering Design of Systems: Models and Methods, Second Edition

ANDREW P. SAGE and JAMES E. ARMSTRONG, Jr.
Introduction to Systems Engineering

WILLIAM B. ROUSE
Essential Challenges of Strategic Management

YEFIM FASSER and DONALD BRETTNER
Management for Quality in High-Technology Enterprises

THOMAS B. SHERIDAN
Humans and Automation: System Design and Research Issues

ALEXANDER KOSSIAKOFF and WILLIAM N. SWEET
Systems Engineering Principles and Practice

HAROLD R. BOOHER
Handbook of Human Systems Integration

JEFFREY T. POLLOCK AND RALPH HODGSON

Adaptive Information: Improving Business Through Semantic
Interoperability, Grid Computing, and Enterprise Integration

ALAN L. PORTER AND SCOTT W. CUNNINGHAM
Tech Mining: Exploiting New Technologies for Competitive Advantage

REX BROWN
Rational Choice and Judgment: Decision Analysis for the Decider

WILLIAM B. ROUSE AND KENNETH R. BOFF (editors)
Organizational Simulation

HOWARD EISNER
Managing Complex Systems: Thinking Outside the Box

STEVE BELL
Lean Enterprise Systems: Using IT for Continuous Improvement

J. JERRY KAUFMAN AND ROY WOODHEAD

Stimulating Innovation in Products and Services: With Function Analysis and
Mapping

WILLIAM B. ROUSE

Enterprise Tranformation: Understanding and Enabling Fundamental Change

JOHN E. GIBSON, WILLIAM T. SCHERER, AND WILLAM F. GIBSON
How to Do Systems Analysis

WILLIAM F. CHRISTOPHER
Holistic Management: Managing What Matters for Company Success

WILLIAM B. ROUSE
People and Organizations: Explorations of Human-Centered Design

GREGORY S. PARNELL, PATRICK J. DRISCOLL, AND DALE L. HENDERSON
Decision Making in Systems Engineering and Management

MO JAMSHIDI
System of Systems Engineering: Innovations for the Twenty-First Century

ANDREW P. SAGE AND WILLIAM B. ROUSE
Handbook of Systems Engineering and Management, Second Edition

JOHN R. CLYMER
Simulation-Based Engineering of Complex Systems, Second Edition

KRAG BROTBY
Information Security Governance: A Practical Development and
Implementation Approach

CUSTOMER NOTE: IF THIS BOOK IS ACCOMPANIED BY SOFTWARE, PLEASE
READ THE FOLLOWING BEFORE OPENING THE PACKAGE.

This software contains files to help you utilize the models described in the
accompanying book. By opening the package, you are agreeing to be bound by
the following agreement:

This software product is protected by copyright and all rights are reserved

by the author, John Wiley & Sons, Inc., or their licensors. You are licensed to
use this software on a single computer. Copying the software to another medium
or format for use on a single computer does not violate the U.S. Copyright

Law. Copying the software for any other purpose is a violation of the U.S.
Copyright Law.

This software product is sold as is without warranty of any kind, either express
or implied, including but not limited to the implied warranty of merchantability
and fitness for a particular purpose. Neither Wiley nor its dealers or distributors
assumes any liability for any alleged or actual damages arising from the use of
or the inability to use this software. (Some states do not allow the exclusion of
implied warranties, so the exclusion may not apply to you.)

SIMULATION-BASED
ENGINEERING OF COMPLEX
SYSTEMS

Preface

The story of developing the maritime chronometer, which took place during
the early eighteenth century, is a fascinating tale of creating a self-regulating
system that was capable of keeping time accurate enough to navigate across
broad stretches of ocean. Mariners had used the position of the sun and the
stars for approximate navigation upon the sea for thousands of years; however,
accurate determination of ship longitude, and thus ship position, depended on
knowing the exact time of day to take measurements. This problem was solved
by the invention of the self-regulating maritime chronometer, thus enabling the
complete conquest of the world’s oceans for trade and exploration. Clerk Maxwell
[Maxwell, J. C., Proc. Roy. Soc. (London), March 5, 1868] described the concept
of a self-regulating governor. James Watts quickly implemented this concept as
the now famous fly-ball form of speed control for steam engines, thus enabling
the industrial revolution. This device served to keep the speed of the engine at a
selectable level regardless of load by controlling the volume of steam available
to the piston during each revolution. If the engine speed increased, the fly-balls
fastened to a spinning shaft moved outward due to centrifugal force, thus moving
an attached slider collar. The steam inlet valve, which was attached to the slider
collar, was moved toward its closed position, thus preventing the engine from
speeding up. Conversely, if the engine speed decreased, the fly-balls would relax,
producing the opposite affect. The resulting dynamic stability produced by this
ingenious feedback control devise was not due only to the mass of the fly-balls,
or to the strength of the spring attached to the collar, or to the length of the
lever arm that connected the collar to the steam valve, or to the efficiency of the
engine, or to the load on the engine. It was due to the concurrent interaction of
all of these components working together.

xiii

xiv PREFACE

In 1948, Norbert Weiner (Weiner, N., Cybernetics, Wiley, 1948) popularized
the term cybernetics by explaining how the foregoing control technology could
be interrelated with computer and communication technologies to implement
not only governors but also pursuit guidance systems and the early forms of
goal-seeking systems.

In parallel, the field of general systems theory, which grew out of the field
of general semantics, formalized the notion that a system consists of two or
more elements having specific interrelationships and even relationships among
the relationships. Further, that the overall response of a system to a given stimulus
was rarely a simple linear function and was as much influenced by the nature
of the relationships as by the properties of the elements. Out of these early
beginnings came a flood of ideas and innovations that mold our modern world
today and our thinking about complex systems.

Jay Forrester introduced systems dynamics models that clarified the ramifica-
tions of the structure of various feedback and feedforward relationships and of
the affect of time delays on these relationships. Ross Ashby articulated the law
of requisite variety, which says that the controller of a system has to have at least
one degree of freedom greater than the system being controlled. Lotfi Zadeh’s
fuzzy logic generalized classical logic to allow classification of system features
to be ambiguous. For example, confidences in feature facts specifying whether
two objects are either close or far can both have a value that varies, depending
on the distance between the objects. The classifier system block, discussed in
Chapter 7, facilitates rule induction by minimizing ambiguity in each decision
context during the generation of new rules.

Others noted that many relationships were not static but needed to be
modeled as active logic (“SIMULA 67 Common Base Language,” O. J. Dahl,
B. Myhrhaug, K. Nygaard, Norwegian Computing Center, Forshning Veien
1B, OSLO 3 Norway, 1968) and, bilaterally, that human reasoning could
be modeled such that computer technology could be leveraged to help do
pattern recognition, choice making, generative planning, and even the design
of machines that could design machines. These early software engineering and
artificial intelligence efforts have evolved into the fields of multiagent systems
and distributed, artificial intelligence (AI). Chapter 7 discusses how such human
reasoning can be simulated with OpEMCSS.

Over these decades engineering educators have struggled to cope with such
complex systems by “simplifying” them into piecewise linear continuous-time
models and discrete-event queuing system models. But systems are not that eas-
ily decomposed. Although progress was made in modeling and simulating such
systems, the skill levels required and the project times involved often meant that
the design decisions were already made by the time the simulation was ready to
provide much needed system analysis and evaluation input to the design process.

A new wave of understanding, and computer-based tools for even better under-
standing of complex self-synchronizing systems, was founded when a group of
nuclear physicists interested in quantum theory came into relationship with a

PREFACE Xxv

group of economists interested in understanding the higher-order, implicit char-
acteristics of stock markets and the global economy. Their dialog was greatly
accelerated by John Holland, discussed in Chapter 7, and his suite of software
tools and constructs for modeling implicit systems and simulating them to reveal
their emergent behaviors, which were otherwise unpredictable by mathematicians
and logicians. The field of complex adaptive systems (CAS) took form and has
spawned a spectrum of studies.

I am indebted to all the complex systems researchers and innovators that have
gone before and have influenced the development of the ideas, tools, and methods
expressed in this book

Acknowledgments

I wish to thank everyone who provided me with assistance in writing this book:
Bill Brown, Dave Brown, Dennis Buede, Philip Corey, Bill Cutler, Tony Genna,
Mike Green, Sam Harbaugh, David Harris, Steve Helton, Kamran Igbal, Carol
Jacoby, Eckhart Linneweh, Peter Macgregor, Jim Manson, Jack Ring, Jim Van-
Gaasbeek, and Dave Watt. Special thanks go to my students Jose Garcia and
Linda Gregory and to my colleague and friend Jack Ring for suggesting the
historical overview presented at the beginning of the preface. I also want to
acknowledge the contribution of employment with FORELL Enterprises (Buena
park, CA), Rockwell International (Anahiem, CA), Navy Fleet Analysis Center
(Norco, CA), and General Electric Company (Phoenix, AZ) to the development
of the methodology presented in this book.

xvii

Overview

I have been a researcher, teacher, and practitioner of systems engineering for
40 + years, including system design, systems analysis and evaluation, and sys-
tems science of complex systems. During this time, the computer, transportation,
manufacturing, business, and military systems that I have worked on were dis-
covered to be best characterized as a set of interacting, concurrent processes. This
discovery inspired the development of context-sensitive systems (CSS) theory as
a way of thinking about interacting concurrent processes. Also developed was
the graphical modeling language, Operational Evaluation Modeling (OpEM), to
express CSS models of both existing and conceptual systems. Further, a graph-
ical discrete-event simulation library, OpEMCSS, was developed more recently
to enable rapid development of CSS models and simulations in the OpEM lan-
guage. I believe that the CSS theory, OpEM modeling language, and OpEMCSS
library, described in this book, can be applied to understand complex adaptive
systems (CAS) and to perform simulation-based systems engineering (SBSE).

Simulation-based systems engineering mitigates system development problems
(resulting from “stove-piped systems” design methods) that are caused by the
failure to optimize the interoperability and synergisms among all component
algorithms and methods at the overall system level. Further, the interactions of
the system with its external systems and the dynamic demands of the operational
environment on the system must be included in a SBSE-level model.

An OpEMCSS-level model provides the structure and ontology (top-level for-
malisms) needed to connect detailed component models for SBSE. The SBSE
approach is:

1. Apply the OpEM top-down systems design methodology discussed in this
book.

Xix

XX OVERVIEW

2. Perform system concept and top-level design trade-ofts to optimize stake-
holder requirements using OpEMCSS.

3. Produce a systems design specification that includes component interface
and qualification system requirements using a design capture database tool.

4. Develop component detailed models of alternative component algorithms
and methods using the OpEMCSS special blocks (see Appendix C).

5. Perform virtual systems integration and system verification & validation
(V&V) using the system-level OpEMCSS simulation.

6. Determine impact of requirement changes and conduct detailed design
trades using the system-level OpEMCSS simulation.

There are many kinds of models used to develop simulations during SBSE.
These models include functional flow, entity relationship, semantic networks,
and various kinds of block diagrams to mention a few. However, only executable
models can be used during SBSE because only executable simulation models,
such as OpEMCSS simulations and Markov models, can be used to numerically
evaluate design trade-offs and derived requirements.

The OpEMCSS library works with the popular commercial software tool,
ExtendSim (a registered trademark of Imagine That Inc. of San Jose, California),
which was chosen for two major reasons. First, the ExtendSim LT-RunTime stu-
dent version is provided on a CD in the back of the book to be used in the
many hands-on experiments found in the book (see Appendix A). Second, it is
a powerful simulation tool when expanded by OpEMCSS. I have programmed
both continuous-time, discrete-event, and hybrid computer simulations in FOR-
TRAN, Pascal, and C/C++, and I have studied various ways to make such
programs execute faster and more efficiently. In my opinion, ExtendSim is a
very efficient implementation of a high level, graphical icon based, simulation
tool. The ExtendSim 4+ OpEMCSS icon blocks automatically provide more than
95% of all simulation code that in the past had to be programmed by hand.
In context-sensitive systems, these programming details are very complex and
would otherwise require extensive programming skill and effort to accomplish.
ExtendSim, with the OpEMCSS library, gives students and systems practitioners
the ability to experiment with complex, context-sensitive interactions and quickly
build a model. Time is not wasted dealing with complex programming details and
writing extensive code, but rather the emphasis is on complex systems design,
analysis, and evaluation for SBSE.

I believe the best way to learn the basic principles of complex systems,
discussed throughout this book, is to actually experience them directly through
hands-on experimentation. Throughout the text, the reader is invited to do
simulation-based experiments that demonstrate the principles of complex
systems. The reader is constantly engaged through the examples in the book
to actively learn and participate. I believe that a student that learns this way is
more likely to be able to apply what he or she has learned in diverse fields and
extend that knowledge to new fields and new problems.

OVERVIEW xxi

Understanding complex systems is like peeling an onion; one does it layer
by layer. This book is organized to begin with a simple system that the reader
already understands and build on this understanding through a series of examples.
Each example has a lesson about complex system or SBSE principles to teach.
Gradually, the book introduces more and more complex system principles. It is
important that students and other readers study each of the models in the book
and do the exercises in order to gain an understanding of the basic principles that
each model represents. Thus, the book is designed for a broad spectrum of people
to gain an understanding of complex systems and SBSE. It will be shown that,
although complex systems have behaviors that are difficult to understand, the
OpEMCSS modeling building blocks are simple to use and easy to understand.

COMPLEX ADAPTIVE SYSTEMS

All complex adaptive systems have emergent behaviors that result due to the
interactions of their components. Such system-level behaviors only occur if
components are working together; they do not occur when operating any sin-
gle component alone. Thus, we cannot understand each component as it operates
independently to gain an understanding of the whole system.

Often the emergent behavior of the system is not predicted when a system
concept is proposed, and its occurrence is a surprise when the system concept is
built. This is why simulation of the entire system, operating within its operational
environment, is an important part of engineering of complex systems discussed
in this book.

In CAS, I believe the main interaction among concurrent processes is commu-
nication and adaptation. There are three main kinds of interactions discussed in
this book, but the communication and adaptation interaction is the one that results
in changes in the system or environment that propagate into the future through
various causal paths. These causal paths through time dictate the behavior of
individual system components, and the result is emergent behavior as discussed
above. Because of these communication and adaptation interactions, the whole
system is more complex than can be predicted through analysis of each system
component separately.

As an example of a system having emergent behavior, a distributed vehicle
traffic control network located in a large city is discussed. This traffic control
network is an example of a system of systems (SOS) where each system in the
network independently provides specific services, and each system can operate
independently of the rest of the SOS. Additional services are provided through
collaboration among the networked systems. Network centric operation (NCO)
of related business units and combat system platforms are other examples of SOS
that are currently of research interest.

Each major intersection has a vehicle traffic light controller to determine traffic
light timing. In this system, each traffic light controller uses its perceptions about
incoming traffic flow to optimize light timing, thus minimizing local vehicle

Xxii OVERVIEW

waiting time. The result of each traffic light controller adapting light timing
to accommodate traffic flow coming from other intersections is to minimize the
average waiting time in the entire network. Global minimization of traffic waiting
time results as a consequence of the emergent behavior of this system, which
is the self-synchronization of each traffic controller’s light timing with other
controllers.

As light timing control in the overall traffic grid evolves in the way dis-
cussed above, a complex but definite pattern in network operation, north—south
red-to-green transition times, emerges out of an initial random light pattern. The
emergent behavior of the traffic grid cannot be explained through an under-
standing of each controller alone. Understanding only comes when we study the
interactions of the controllers as they adapt their behaviors in response to per-
ceived information about incoming traffic flow, achieving self-synchronization of
all traffic light controllers in the network.

The desired emergent behavior for the traffic control system was achieved
by experimenting with feedback in the network. Trying different sets of fuzzy
control rules and control system gains did this. With no feedback, the traffic
lights operate independently and average vehicle waiting time is high. With
very strong feedback, the traffic control network operation appears chaotic (little
self-synchronization occurs), and the average vehicle waiting time is high. When
the feedback is just right, the emergent behavior discussed above is observed,
and the average vehicle waiting time in the network is minimized. It is also
interesting to note that the overall system never reaches steady-state operation;
indeed, the system seems to be in a constant state of flux as observed by the
random appearance of the light timing control signals, even when the average
vehicle waiting time is being minimized, implying some kind of convergence.

INTENDED AUDIENCE AND PREREQUISITES

This book is intended as a senior elective and graduate-level textbook (a solu-
tion manual of the problems is available) and a practitioner’s reference book.
It is mainly intended for systems engineers, integrated product engineers, soft-
ware engineers, industrial/manufacturing engineers, business management design
people, and intelligent enterprises (IE) people.

However, I believe that this book can be used in any field that is concerned
with collaborating/conflicting entities that perform a set of tasks that lead to
satisfaction of a measurable goal that may or may not be explicitly known or
stated. Such fields include, in addition to those mentioned above, societal systems
and sociology, biological and ecological systems, economic systems, and others.
There is currently no book known to me that covers the basic principles of
complex systems in such a way that students and practitioners can readily extend
these principles to all kinds of systems through hands-on experimentation using
an icon-based simulation tool.

As will be demonstrated in Chapter 1, the prerequisite for this book is a basic
problem-solving ability, which I believe the vast majority of people possess as

OVERVIEW XXiii

common sense. Each one of us formulates goals for ourselves all the time to solve
problems confronting us. Once we state our goal, we visualize a set of tasks or
steps that takes us from our current situation to one satisfying our goal. If we
can expect help from others to execute these tasks, we organize the tasks into
sequential and concurrent arrangement. We call our organized set of tasks, more
commonly, a plan. The execution of our plan by a group of people hopefully leads
to goal satisfaction. Such a plan can be developed using a task flow diagram and
modeled as a collection of interacting concurrent processes, which are subjects of
this book. A computer simulation program based on these interacting concurrent
processes can be used to optimize our plan and make it robust in the presence
of varying contingencies.

This book is not intended to be a survey of simulation in which simulation is
an end unto itself. There are plenty of books already that do that. In this book,
simulation is the means to an end; understand, design, analyze, and evaluate
complex systems in order to do SBSE. However, I do discuss how simulations
work, including basic principles such as what are the different kinds of simulation
methods and what are some of the various applications of simulation during the
engineering of complex systems.

This book is not intended to be a survey of complex adaptive systems either.
There are many anecdotal-type books already published that provide insights into
CAS. This book simply intends to provide hands-on learning and experimenta-
tion with the basic principles of complex systems and to teach simulation-based
problem-solving skills and system design, analysis, and evaluation of SBSE
methodology.

ORGANIZATION

Throughout this book a commonsense approach to understanding, designing, ana-
lyzing, and evaluating complex systems and doing simulation-based systems
engineering is presented. It begins by discussing traditional ways of thinking
about systems and then shows how one of these views, the operational view of
systems, can be best expressed using interacting concurrent processes. A graphical
language (OpEM) is presented that provides a natural way to describe inter-
acting concurrent processes and implement them using simulation. A graphical
discrete-event simulation library (OpEMCSS) is discussed throughout this book
that implements this graphical language and provides a means to experiment
with complex systems and do SBSE. A large number of example models are
described that illustrate how to use the OpEMCSS library blocks to model com-
plex systems. These examples are presented so that a large spectrum of readers
can understand them.

In Chapter 1, general systems are defined and some of the more commonly
used system models are described. Next, readers are asked to analyze a
goal-oriented activity they already know how to do and to build a functional
flow model of this activity. I introduce some of the basic OpEMCSS simulation

