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Preface

In this book, a wave equation is a linear hyperbolic equation on a
Lorentzian manifold, that is to say on a given space-time. The classical
theory of linear hyperbolic second-order equations is largely the
creation of Hadamard and M.Riesz. This book is an attempt to
present it in modern language, by using the theory of distributions,
and a little differential geometry. There is virtually no physics in the
book, but it is hoped that an account of a basic aspect of the mathe-
matics of wave propagation will be of interest to physicists.

The classical theory is local, and constructive. These two features
are linked, as the construction of fundamental solutions (Green’s
functions), on which it is based, requires certain geometrical elements
that can only be defined locally. No attempt has therefore been made
to discuss global questions.

The first three chapters are preparatory. Chapter 1 deals with
differential geometry, and chapter 2 with the theory of distributions,
as far as either of these is needed in the sequel. Neither chapter can, of
course, replace a detailed exposition, for which one must go to the
literature, but the inclusion of this material does make the book more
self-contained. Chapter 3 is concerned with characteristics and bi-
characteristics; for a wave equation, these are, respectively, the null
hypersurfaces and the null geodesics of the underlying space~time. It
also introduces, in a rather elementary way, the connection between
characteristics and the singularities of solutions of the equation, a topic
that has received much attention recently.

The main matter of the book is in the last three chapters. This is the
general construction of fundamental solutions, and their application
to the Cauchy problem. (There are, I am afraid, very few examples.
The best chance of getting solutions in closed form is to utilize, when
possible, groups of motions of the space—time. This is a subject that
would require another, and quite different, book.) Because of its
physical interest, the theory is set out (in chapters 4 and 5) for a four-
dimensional space—time. This makes for some simplifications, although,
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PREFACE

as M. Riesz’ method of analytic continuation is reserved for the last
chapter, there are also one or two tedious technical arguments.

In chapter 4, I have in all essentials followed Hadamard and M.
Riesz. There are a few departures; in particular, the emphasis is on the
C= case, where an integral equation method must be used, rather than
on the analytic case. It would have been possible to include space-
times of finite differentiability class. But it seems to me that these are
best treated in terms of Sobolev spaces of functions and distributions,
and once these are introduced, it seems altogether more logical to adopt
the abstract approach. This is based on integral estimates and the
powerful methods of functional analysis. To do justice to it would have
made a book that is already too long, quite unwieldy.

There are two points that should perhaps be mentioned. By a
method that is now very familiar (for example, in the theory of
pseudo-differential operators), one can construct a C* parametrix.
The advantage of this is that one gets precise information on the
behaviour of the tail term of the fundamental solution near the surface
of the null cone. The second point is that I have tried to bring out the
causality hypotheses that are implicit in the classical theory, by intro-
ducing a class of neighbourhoods that are here called causal domains.

The fundamental solutions derived in chapter 4 are used in chapter 5
to prove the basic local existence and uniqueness theorems. Here,
I have used a local version of Leray’s past-compact and future-
compact sets. There then follow several detailed representation
theorems, which may be of interest in applications, in spite of the
somewhat heavy computations that are needed to derive them.

It must be pointed out that the theory is mainly developed for a
scalar equation. The extension to vector and tensor equations then
presents no difficulty, once transport bitensors have been introduced.

Although the corresponding theory for space~times of arbitrary
dimension is of less physical interest, it is set out briefly in the last
chapter. Apart from the clarification which this brings to the mathe-
matics, it also makes Hadamard’s method of descent available in the
four-dimensional case.

T want to thank all those who have sat through graduate lectures,
have read earlier versions of the book, and have generally helped with
discussion and advice; particularly, I want to thank Dr D. W. Sciama,
who invited me to contribute the book to this series, and encouraged
me during its writing.

Cambridge 1974 F. ¢. FRIEDLANDER
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1
Differential geometry

A space—time can be described naively as a four-dimensional space in
which a metric is defined by means of a line element ds, whose square
is a non-degenerate indefinite quadratic differential form,

ds? = g datda? (g = g,:)- (1.0.1)

The summation convention is used here, and the g,; are functions of
x = (22, 22, 23, x%). The signature of the form is — 2, so that
ds® = (l;da®)? — (ly;dat)? — (lg;dact)® — (1y;dd)?,

where the linear differential forms l,;d27 are linearly independent.
(Many authors take the signature of ds?to be 2.) All coordinate systems
that are related to each other by sufficiently differentiable coordinate
transformations are considered as equivalent frames of reference, and
as ds?is invariant, the g,; transform as the components of a symmetric
covariant tensor.

Denote the determinant of the g;; by ¢, and the inverse of the matrix
(9:;) by (g%). It is well known that the linear second-order differential
operator

O = lgl- 5 (1ol 55) (1.0.9)

is invariant under coordinate transformations. For the metric of
special relativity,

ds? = (dal)?— (da?)? — (dad)2 — (dat)?,

the equation [Ju = 0 is the ordinary wave equation,

ERERTRO

One can therefore regard the differential equation [Ju = 0 as a wave
equation in the space-time with the metric (1.0.1). One can also con-
sider the more general equation

Pu--[]u+0b’a +bu =f, (1.0.3)
L1]



2 DIFFERENTIAL GEOMETRY [1.1

where the af are the components of a vector field, b is a scalar field, and
J (the ‘source term’) is a given function. It is this equation which will
here be called a wave equation, or a scalar wave equation. There are,
also, analogous vector and tensor wave equations. Such equations
oceur in general relativity, where they govern the propagation of
test fields, small disturbances whose effect on the space-time back-
ground can be neglected.

Because of (1.0.2), the equation (1.0.3) is, in a fixed coordinate
system, an equation of hyperbolic type. Hyperbolic equations occur
in many contexts, and usually govern wave propagation phenomena.
Clearly, it is natural to associate a space—time with such an equation.
This has the formal advantage that it facilitates coordinate trans-
formations. But, in fact, the connection is much deeper, because the
characteristics of the equation (1.0.3) are the null hypersurfaces of the
metrie (1.0.1).

The description of space—time given above is inadequate, and it is
better to define a space-time from the outset as a differentiable mani-
fold with a Lorentzian metric. This chapter is an outline of the relevant
concepts and results in differential geometry.

The first section outlines the basic definition and concepts, such as
differentiable structure, tangent and cotangent spaces and bundles,
tensor fields, and metrics. The second section deals in rather more
detail with geodesics and the exponential map. It includes a proof of
Whitehead’s theorem on the existence of geodesically convex domains,
and the derivation of the properties of the square of the geodesic
distance between points in a geodesically convex domain. This material
will be of particular importance later on. In the last section, exterior
forms are introduced, and the integral of an exterior form of maximal
degree is defined. For a manifold with a metric, a form which can serve
as an invariant volume element is defined; this will be constantly used
in the sequel. The section ends with a statement of the divergence
theorem.

The reader’s attention is also drawn to the appendix to this book,
which summarizes some elementary topological definitions and
results.

1.1 Differentiable manifolds

An n-dimensional manifold M is a topological space, every point of
which has a neighbourhood that is homeomorphic to an open set in R”.
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If Q is such a neighbourhood, and 7: Q — R” the homeomorphism in
question, then 7 sends every point p e Q to a point

mp =z = (x,...,2") e R,

the z? are local coordinates of p, Q is a coordinate neighbourhood, m is a
coordinate system, and the pair (Q, ) will be called a chart. (A chart at
» will be any chart (Q,7) such that peQ.) Suppose that (Q,7) and
(Q, 7) are charts, and that Qn Q is not empty. Then the respective
local coordinates z = mp and & = #p of a point p e Q n Q are related by
the map ~ ~
fomL:w(Q2nQ)—>AQnQ), (1.1.1)
which is called a coordinate transformation, and is a homeomorphism
between open sets in R,

A O structure on a manifold M is an indexed family of charts
{Q,, m,} that has the following properties:

(i) {Q,}isa covering of M, UQ, = M.

(ii) The coordinate transformations 7,07, are infinitely
differentiable.

(iii) If (Q,m) is a chart such that 7,0 77! is infinitely differentiable
for all v, then (Q,7) is a chart belonging to the structure.

A manifold with a C® structure is called a C* manifold. If one drops
condition (iii), one obtains a covering of M by C® charts, which can be
extended to a O structure; this extension is unique. If (ii) is replaced
by the requirement that the coordinate transformations are to be C¥%,
which means that they have continuous derivatives of all orders less
than or equal to k, one has a C¥ structure. A C® structure is also a
covering of M by C* charts; hence it has a unique extension to a C¥
structure. We shall usually work with O® manifolds, but occasionally
extend the C® structure to a CF structure with finite %.

If f(p) is a function on M and (Q, ) is a chart, then

Jorz) = f(n~x)

is a function on 7Q < R, (In this chapter, functions are assumed to be
real-valued; in subsequent chapters, complex-valued functions will
also occur.) If fon—1 is infinitely differentiable for all charts, then we
say that fe C® or that fe C°(M); it is enough for this to hold in each
one of a family of charts covering M. The class C¥(M) is defined
similarly. If D < M is an open set, and f is a function defined on D,
then fe 0®(D) (respectively, f€ C¥(D)) meansthat fon—1:m(Q n D)-»>R
is O (respectively, C) for all charts (2, 7) such that Q meets D.
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The support of a function f: M >R is the closure of the set
{p; f(p) + 0}; it is denoted by suppf. If D < M is an open set, then
CF (D) is the class of all fe C°(D) whose supports are compact subsets
of D; C¥(D) is defined in the same way.

An open covering {€,} of M is called locally finite if every compact
set meets only a finite number of the €,. A topological space is called
paracompact if every open covering has a refinement that is locally
finite; C* manifolds will be assumed, throughout, to be paracompact.
A partition of unity is an indexed family of functions ¢, € C(M) whose
supports are a locally finite covering of M, and which is such that

0<¢, <1, ¢, =1 (1.1.2)

Note that, at each point of M, at least one of the ¢, is non-zero, and
all but a finite number of the @, are zero. It can be shown that, given
a covering {Q} of M by open sets, there is a partition of unity {¢,}
subordinated to this covering. This means that, for each j, there is a v
such that supp ¢, = Q,. If the covering is locally finite, and the (), are
relatively compact, then one can choose a partition of unity {¢;} such
that supp ¢, = Q; for each j. This will be the usual situation in the
sequel, and the Q; will generally be coordinate neighbourhoods.

Let M’ and M be C* manifolds, of dimensions m and n respectively,
and let g be a map M’ — M. Such a map is said to be C® if the map
mogom' 1. w'Q’ - R» is C= for all pairs of charts (Q’,7") and (€2, 7),
in M’ and M respectively, such that gQ’ = Q. Let p’ be a point in M,
p = gp’ itsimage under g in M, and (Q’,7'), (Q,7) be charts at p’ and p
respectively, such that 7Q’ < Q. The rank of ¢ at p’ is then, by
definition, the rank of the Jacobian matrix D(mogon'~1) at 7' 1p’; it
is evidently independent of the choice of the charts (Q',7') and (£2, ).
The map g is called an imbedding if it is one-to-one (injective) and its
rank is equal to m, the dimension of M’, at all points of M’. If g is an
imbedding and onto (surjective), then it is a diffeomorphism; one then
has, necessarily, m = n. With the obvious modifications, one can also
define maps, imbeddings, and diffeomorphisms, of class C*.

An m-dimensional sub-manifold of M, wherem < n,isaset M’ < M
which can be covered by coordinate charts (Q, ) such that

QnM’—_—{p;pEQ, x =7p, xm+1=...=x”=0}; (1.1.3)

if m =mn, M’ is just an open set in M. One can consider M’ as an
m-dimensional manifold, with the differentiable structure inherited
from that of M; the inclusion map M’ > M is then obviously an
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imbedding. Conversely, the image of an imbedding is always a sub-
manifold. The non-negative integer n —m is the codimension of M’. If
m =1, M’ will be called a curve; if m = n—1, a hypersurface; and if
1 <m < n—1, it will be sometimes be called an m-surface. A sub-
manifold M’ of codimension k can be specified by giving k¥ C* funetions
8y(p), ..., Sp(p) and setting M’ = {p; S;(p) = 0, ..., S;(p) = 0}, provided
that the rank of the map M — R* which sends pe M to

(Sl(p)> teey Sk(p)) € Rk

is equal to % at all points of M’; for a hypersurface (k = 1) this means
that the gradient of S(p) must be non-zero at all points of {p; S(p) = 0}.
(The gradient of a function is defined below.) Locally, any sub-
manifold can be given in this form, by (1.1.3).

So far, we have only considered unbounded manifolds. A manzfold-
with-boundary is defined in the same way as an unbounded manifold,
except that the sets 7Q are only required to be open subsets of the
closed half-space R” = {w;zeRm,an > 0} If 7,(Q,nQ,) contains
points in oR™ = {x; zeR", 2™ = 0}, condition (ii) above must be
understood to mean that the coordinate transformation 7,0m,* can
be extended to a diffeomorphism between open sets in R, It is obvious
that, for any point pe M, np is either in R% = {z; xeR", 2™ > 0} for
all charts at p, or in 8@. In the former case, p is an interior point, in
the latter, it is a boundary point. The set of boundary points is the
boundary ¢M of M; it is an (n —1)-dimensional C® manifold, with the
differentiable structure inherited from that of M.

An n-dimensional manifold M can always be imbedded in a
Euclidean space RY, where N is sufficiently large; by Whitney’s
embedding theorem, one can take N = 2n+ 1. Considering R" as a
vector space, one can see intuitively that the tangent vectors to
curves that go through a fixed point pe M form an n-dimensional
vector space, the tangent space at p. For an intrinsic definition, we
consider parametrized curves through p. By this we mean a C! map
t - f(¢) of an interval Iy = (—9,d)eR into M, such that f(0) = p. If
(Q,7) is a chart at p, and ¢ is sufficiently small, then f(I;)e Q, and
t - mof(¢) is a curve in R” that has a tangent vector

£ =2 mof@)lemo (1.1.4)

at the point 7 o f(0) e R*. Let ({3, #) be another chart at p and suppose
that f(I;)e Q; we obtain another Euclidean tangent vector £, to the
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curve? — 7 of(t) at # o f(0). If one reads £ and £ as column vectors, and
the Jacobian D(# on~1) of the coordinate transformation as an n xn
matrix, then it follows from the chain rule for partial derivatives that
£ and £ are related by the law of contravariance,

£ = D(Fom1)|,,E. (1.1.5)

Guided by this relation, we now consider the set of triples (2,7, £),
where (Q, 7) is a coordinate chart at p and £ is a vector in R». It is easily
verified that the relation

(QmE) = @78 if L=DEor™) |4

is an equivalence relation; a tangent vector v at p is then, by definition,
an equivalence class with respect to this relation. One usually writes
£ = m,v for the components of £. The tangent vectors at p obviously
form an n-dimensional vector space over R; addition, and multiplica-
tion by a number, can be defined, componentwise, in any coordinate
system. This is the tangent space at p, and is denoted by T'M,,. It follows
from (1.1.4) that a parametrized C* curve that goes through p deter-
mines a tangent vector at p, which will sometimes be denoted by
f'(0) or by (d/dt) f(0). Conversely, it is evident that any tangent vector
at p can be considered to be the tangent vector to some parameterized
curve through p.

The set of all tangent vectors to M can be made into a C* manifold,
which is called the tangent bundle, and denoted by TM . If ve T M, then
it is in one and only one 7'M, ; let IT denote the projection, which is the
mapv - p. Let (Q, 7) be a coordinate chart, and suppose that v e IT-1€2.
Assign to v the coordinates kv = (7 o Ilv, 7, v) = (, §), say. One can
easily show that there is a unique topology for TM such that, for all
charts in the 0= structure of M, x is a homeomorphism on an open set
in R# x R». If (3, #) is another chart, and Q n Q is not empty, then it
follows from (1.1.5) that the coordinate transformation in TM is

F=momx, E=D@Hon){ (1.1.6)
so that the tangent bundle has a C= structure.

A vector field can now be defined as a cross-section of T M ; thisis a map
V: M — TM such that o V is the identity. In local coordinates, this
just means that Vonlx = (x, {(z)). In view of what has already been
said about maps of one C° manifold into another one, it is evident how
C* and C® vector fields are defined. In local coordinates, the com-
ponents Vi(x) of a C® vector field are, of course, C° functions of z, and
transform by contravariance.
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The cotangent space T*M, at a point pe M is the dual of TM,; it
consists of all linear maps w: TM,, > R, made into an n-dimensional
vector space over R in the natural way. Its elements are called
covectors. The value of the covector w at ve T'M,, will be denoted by
{w, v), and called the scalar product of w and v. An important example
of a covector is the gradient of a C* funection at p. Let u be a C* function,
defined on a neighbourhood of p, and let ve T'M,,. One can always find
a parameterized curve ¢ - f(¢) such that f(0) = p, and f'(0) = v. The
composite function ¢ > wuof(t) is a ! function, on some interval
(—=8,8)eR, and

F(0) = v — du(p) uof M=o

is a linear form on 7'M, and so a covector. We denote this map by
grad u(p) or Vu(p), and write

du(p) = {(grad u(p), v) = (Vu(p), ). (1.1.7)

Let (Q, 7) be a coordinate chart at p. The coordinate curves are the
images, under 771, of the coordinate lines in R* at np,

xf = (mp)i+8it (1,j=1,...,n),

where the 8} are the Kronecker deltas, The tangent vectors e, to these
curves are a basis of T'M,,, associated in a natural way with (Q,7); we
have already used this basis, for if £ = 7, v then the £? are just the
components of » with respect to the basis {e)} 1<;<,- The dual basis of
{e@h<i<n consists of the covectors e*? such that (¢*, ¢, = &}. So, if

one writes v = Liey, W= w e, (1.1.8)
using the summation convention, then one obtains the usual identity
{w,v) = 0, . (1.1.9)

In particular, it follows from (1.1.7) and
d
du(p) = Et(uon—l)o (mof)|eo
that du = (grad u(p),v) = gw— wom(x), (1.1.10)

which is the classical form of the gradient.
The components w; of a covector transform by covariance, as can
immediately be inferred from (1.1.9) and (1.1.5); if one reads {®;};<;<n

as a Tow matrix, this is
@ = wDm o, (1.1.11)



8 DIFFERENTIAL GEOMETRY [1.1

We shall frequently use classical notation, which, although ambi-
guous, is more convenient in computations. By an abuse of language,
wom(z),uof~L(#),... are denoted by u(z), u(%), ...; a tangent vector
is written as a differential dx = (da?, ..., dz%), so that (1.1.10) assumes
the familiar form du = (du/ox?)dx’. Of course, dx? has two distinct
meanings; it may be a component of a tangent vector, or a covector,
which is the gradient of a coordinate function (7p)f = #%. But no con-
fusion is likely to arise in practice if this is borne in mind.

The cotangent bundle is constructed like the tangent bundle; it is a
C* manifold 7*M of dimension 2n. Its coordinate transformations are
obtained by combining the coordinate transformations of M and the
law of covariance (1.1.11). A covector field is then a cross-section of
T*M. (A covector is of course the same as a ‘classical’ covariant
vector.) A gradient field is an example of a covector field.

Suppose that S is a sub-manifold of M, of dimension m < n. The
tangent space to § at a point pe S, 7'S,, is obviously the subspace of
T M, that is spanned by the tangent vectors to parametrized curves
through p that are in §. The annihilator of 7'S, is the subspace of
T*M, defined by

N, = {w; weT*M,,{w,v) =0 forall veTS,},
and is, clearly, the normal to S. If § is a hypersurface (m = n— 1), then
N, is one-dimensional; if this hypersurface is given as {p; u(p) = 0}
then N, is the one-dimensional subspace of 7*3{, which contains
grad u(p). (Recall that, by definition, grad «(p) + 0 at all points of a
hypersurface S = {p; u(p) = 0}.)

Covectors have been introduced as linear forms on 7'M,,. By duality,
vectors can also be considered as linear forms on T*M,. A tensor of
type (r,s) is a multilinear form

S(wa), o5 Wy Vs -5 Vo)
that is to say, a map
S: T*M, x ... x T*M, x YLMP X...xTM, >R

r factors s factors
that is linear when restricted to any one of the factors T'M, or T*M,,.
Tensors of fixed type are again a vector space over R, addition and
multiplication by a number being carried out with the multilinear
forms. To define the fensor product of a tensor S of type (r,s) and a
tensor T of type (k,1), one simply puts

ST (s -+ s Wigsdr Vs +++5 Visap)
=8(Wys oo r Weeps V5 -3 Vig)) TG 135 -+ Wir s Vs 1> -+ Vi)
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As tensors of type (1,0) are vectors, and tensors of type (0,1) are
covectors, tensors of all types can be built up by forming tensor pro-
ducts of vectors and covectors. So, if (Q,7) is a chart at p, and
{ewhi<i<ns {6¥P}<icn are the associated dual bases of 7'M, and T*M,
respectively, then a basis of the vector space of tensors of type (r, s) is
provided by the tensors e;,® ... ® ;) ® e*W ® ... ® e*99, and a
tensor 7' of type (r, s) can be written as

T — Til..'irj'l...jge(il) ® s ® e(z,) ® e*(fl) ® e ® e*(]’.s')’
with the usual transformation law for the tensor components,

oFh B ah Qo'
ky.okep . —
I ds 6&71 . aih'

T’“""ijl...jx = -ax_kl 5;1;_’03
Finally, tensor fields are defined as cross-sections of the appropriate
tensor bundle over M. The scalar product is a tensor of type (1, 1),
whose components, at all points, and in all coordinate systems, are the
Kronecker deltas.

A tensor of type (0, 2) at a point pe M, G(v,?') is called symmetric if
G(v,v") = G(v',v) for all tangent vectors v, v’ at p; it is called non-
degenerate if G(v,v") = 0 for all v’ T'M,, implies that v = 0. In local
coordinates, this means that the components are a symmetric non-
singular matrix (¢;;). A metric, on a C® manifold M, is a non-degenerate
symmetric C® tensor field G(p; v,v’) of type (0,2). We define the
signature of G at a point p to be the sum of the signs of the eigenvalues
of the matrix (g;;(x)), where the «* are the local coordinates of p. By
the law of inertia for quadratic forms, the signature is independent of
the choice of the local coordinate system, and it follows from contin-
nuity that it is the same at all points of M, if M is connected. If the
signature is equal to z, the dimension of the manifold, so that G(p; v, v’)
is positive definite, then the metric is Riemannian. Otherwise, it is
called pseudo-Riemannian (unless it is equal to —n, when one can
replace G by — G). If the modulus of the signature of the metricisn — 2,
then the metric is called hyperbolic or Lorentzian. A space—time is a C®
manifold with a Lorentzian metric; we shall always take the signature
to be 2—n.

Any C® manifold admits a Riemannian metric, and any non-
compact C° manifold admits a Lorentzian metric.

At a point pe M, the metric furnishes an inner product for TM,,
which is just G(v,v'). By equating this to the scalar product, one
obtains an isomorphism of T'M, and T*M, which is the classical



