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Preface

Theoretical physics deals with physical models. The main requirements for a
good physical model are simplicity and universality. Universal models which
can be applied to describe a variety of different phenomena are very rare in
physics and, therefore, they are of key importance. Such models attract the
special attention of researchers as they can be used to describe underlying
physical concepts in a simple way. Such models appear again and again over
the years and in various forms, thus extending their applicability and educa-
tional value. The simplest example of this kind is the model of a pendulum;
this universal model serves as a paradigm which encompasses basic features
of various physical systems, and appears in many problems of very different
physical context.

Solids are usually described by complex models with many degrees of
freedom and, therefore, the corresponding microscopic equations are rather
complicated. However, over the years a relatively simple model, known these
days as the Frenkel-Kontorova model, has become one of the fundamental and
universal tools of low-dimensional nonlinear physics; this model describes a
chain of classical particles coupled to their neighbors and subjected to a pe-
riodic on-site potential. Although links with the classical formulation are not
often stated explicitly in different applications, many kinds of nonlinear mod-
els describing the dynamics of discrete nonlinear lattices are based, directly
or indirectly, on a 1938 classical result of Frenkel and Kontorova, who applied
a simple one-dimensional model for describing the structure and dynamics
of a crystal lattice in the vicinity of a dislocation core. This is one of the
first examples in solid-state physics when the dynamics of an extended defect
in a bulk was modelled by a simple one-dimensional model. Over the years,
similar ideas have been employed in many different physical problems, also
providing a link with the mathematical theory of solitons developed later for
the continuum analog of the Frenkel-Kontorova (FK) model.

In the continuum approximation, the FK model is known to reduce to the
exactly integrable sine-Gordon (SG) equation, and this explains why the FK
model has attracted much attention in nonlinear physics. The SG equation
gives an example of a fundamental nonlinear model for which we know ev-
erything about the dynamics of nonlinear excitations, namely phonons, kinks
(topological solitons), and breathers (dynamical solitons); and their multi-
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particle dynamics determines the global behavior of a nonlinear system as a
whole. Although the FK model is inherently discrete and is not integrable,
one may get a deep physical insight and simplify one’s understanding of the
nonlinear dynamics using the language of the SG nonlinear modes as weakly
interacting effective quasi-particles. The discreteness of the FK model mani-
fests itself in such phenomena as the existence of an effective periodic energy
known as the Peierls-Nabarro potential.

The simplicity of the FK model, due to the assumptions of linear inter-
atomic forces and a sinusoidal external potential, as well as its surprising rich-
ness and capability to describe a range of important nonlinear phenomena,
has attracted a great deal of attention from physicists working in solid-state
physics and nonlinear science. Many important physical phenomena, ranging
from solitons to chaos as well as from the commensurate-incommensurate
phases to glass-like behavior, present complicated sub-fields of physics each
requiring a special book. However, the FK model provides a unique opportu-
nity to combine many such concepts and analyze them together in a unified
and consistent way. ) _

The present book aims to describe, from a rather general point of view,
the basic concepts and methods of low-dimensional nonlinear physics on the
basis of the FK model and its generalizations. We are not restricted by the
details of specific applications but, instead, try to present a panoramic view
on the general properties and dynamics of solid-state models and summarize
the results that involve fundamental physical concepts.

Chapter 1 makes an introduction into the classical FK model, while
Chap. 2 discusses in more detail the applicability of the FK model to dif-
ferent types of physical systems. In Chap. 3 we introduce one of the most
important concepts, the concept of kinks, and describe the characteristics of
the kink motion in discrete chains, where kinks are affected by the Peierls-
Nabarro periodic potential. In Chap. 4 we analyze another type of nonlinear
mode, the spatially localized oscillating states often called intrinsic localized
modes or breathers. We show that these nonlinear modes may be understood
as a generalization of the SG breathers but exist in the case of strong discrete-
ness. Chapters 3 and 4 also provide an overview of the dynamical properties
of the generalized FK chains which take into account more general types of
on-site potential as well as anharmonic interactions between particles in the
chain. The effect of impurities on the dynamics of kinks as well as the dy-
namics and structure of nonlinear impurity modes are also discussed there.
Chapter 5 gives a simple introduction to the physics of commensurate and
incommensurate systems, and it discusses the structure of the ground state
of the discrete FK chain. We show that the FK model provides probably the
simplest approach for describing systems with two or more competing spa-
tial periods. While the interaction between the atoms favors their equidistant
separation with a period corresponding to the minimum of the interatomic
potential, the interaction of atoms with the substrate potential (having its



Preface IX

own period) tends to force the atoms into a configuration where they are
regularly spaced. In Chap. 5 we employ two methods for describing the prop-
erties of the FK model: first, in the continuum approximation we describe the
discrete model by the exactly integrable SG equation, and second, we study
the equations for stationary configurations of the discrete FK model reducing
it to the so-called standard map, one of the classical models of stochastic the-
ory. The statistical mechanics of the FK model is discussed in Chap. 6, which
also includes the basic results of the transfer-integral method. Here, the FK
model again appears to be unique because, on the one hand, it allows the
derivation of exact results in the one-dimensional case and, on the other hand,
it allows for the introduction of weakly interacting quasi-particles (kinks and
phonons) for describing the statistical mechanics of systems of strongly in-
teracting particles. Chapter 7 gives an overview of the dynamical properties
of the FK model at nonzero temperatures, including kink diffusion and mass
transport in nonlinear discrete systems. Chapter 8 discusses the dynamics
of nonlinear chains under the action of dc and ac forces when the system is
far from its equilibrium state. Chapter 9 discuses ratchet dynamics in driven
systems with broken spatial or temporal symmetry when a directed motion
is induced. The properties of finite-length chains are discussed in Chap. 10,
whereas two-dimensional generalizations of the FK model are introduced and
described in Chap. 11, for both scalar and vector models. In the concluding
Chap. 12 we present more examples where the basic concepts and physical
effects, demonstrated above for simple versions of the FK chain, may find
applications in a broader context. At last, the final chapter includes some in-
teresting historical remarks written by Prof. Alfred Seeger, one of the pioneers
in the study of the FK model and its applications.

We thank our many colleagues and friends around the globe who have
collaborated with us on different problems related to this book, or contributed
to our understanding of the field. It is impossible to list all of them, but
we are particularly indebted to A.R. Bishop, L.A. Bolshov, D.K. Campbell,
T. Dauxois, S.V. Dmitriev, S. Flach, L.M. Floria, R.B. Griffiths, Bambi Hu,
B.A. Ivanov, A.M. Kosevich, A.S. Kovalev, I.F. Lyuksyutov, B.A. Malomed,
S.V. Mingaleev, A.G. Naumovets, M.V. Paliy, M. Peyrard, M. Remoissenet,
J. Roder, A. Seeger, S. Takeno, L.-H. Tang, A.V. Ustinov, LI. Zelenskaya,
and A.V. Zolotaryuk.

Canberra, Australia Oleg Braun
May 2003 Yuri Kiwvshar



List of Abbreviations

CP
DW
DB
DSG
FPK
FK

central peak

double well (substrate potential); domain wall
double barrier (substrate potential)

double sine-Gordon (equation)
Fokker-Planck-Kramers (equation)
Frenkel-Kontorova (model)

FvdM Frank — van der Merwe (limit)

GS
IC
LJ
NS

N<NHXET<NSHwadvZzzox

ground state
incommensurate (phase)

Lennard-Jones (potential)

nonsinusoidal (substrate potential)

sine-Gordon (equation)

transfer integral (method)

mobility

diffusion coefficient (Dy, D, Do, Ds, D, D.)

(total) system energy

free energy; force

Gibbs free energy; Green’s function

Hamiltonian

atomic flux

kinetic energy; transfer matrix; Chirikov’s constant

length of a chain

number of wells of the substrate potential; memory function
number of atoms, kinks, breathers

kink momentum; misfit parameter

correlation function; number of atoms in the cnoidal wave per period
distance between kinks

entropy

temperature; Chirikov map

total potential energy (Usub, Uint)

potential energy (Vsub, Vint, VPn)

enthalpy

kink coordinate

statistical sum Y (T, I1, N); center of mass coordinate; point in the tour
statistical sum Z(T,L,N)
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lattice constant (as, a4, Gmin, AFM)

sound speed

kink width

force; distribution function

elastic constant (gaubry, ga, k)

discreteness parameter; hull function; scaling function
flux density

momentum; modulus (of elliptic function); wavevector
atomic index

kink mass

concentration of kinks (n¢ot, Mk, Mw, Npair)

period of C-phase

used in window number, w =7/s

number of atoms in the unit cell, # = s/g; entropy per particle; spin
time

atomic displacement

.kink velocity; interaction between kinks, vint
displacement; window number, w = r/s

atomic coordinate

anharmonicity parameter

Boltzmann factor, 8 = (kgT) ™"

parameter for exponential interaction

Lorentz factor; Euler constant

phase shift (in collisions of kinks)

energy (s, €k, Epairy EPN)

order parameter

phonon momentum; parameter for Morse potential
susceptibility; small displacement

eigenvalues

correlation length; canonical variable

chemical potential

friction coefficient; Bloch function

density (of atoms, phonons, kinks)

dimensionless temperature, 7 = kg1 /e
dimensionless concentration (coverage), § = N/M = s/q
frequency

minimal phonon frequency of the pinned FK chain
kink topological charge

eigenvalues

phase volume

gap in spectrum

pressure

great statistical sum Z(T, L, u)

number of states; phase-space sharing; Mori function
step function

response function

Liouville operator

projection operator
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1 Introduction

This introductory chapter is intended to provide a general overview of the
classical formulation of the Frenkel-Kontorova model and its continuum ver-
sion, the sine-Gordon equation. The chapter introduces also the fundamental
modes of the model, phonons, kinks, and breathers, and describes some of
their general properties. It also provides the background for the subsequent
discussion of the basic physical systems where the nonlinear dynamics is de-
scribed by the Frenkel-Kontorova model and its generalizations.

1.1 The Frenkel-Kontorova Model

A simple model that describes the dynamics of a chain of particles interacting
with the nearest neighbors in the presence of an external periodic potential
was firstly mentioned by Prandtl [1] and Dehlinger [2], see the historical notes
of Prof. Alfred Seeger at the end of the book (see Chap. 13). This model
was then independently introduced by Frenkel and Kontorova [3]-[6]. Such a
chain of particles is presented schematically in Fig. 1.1. The corresponding
mechanical model can be derived from the standard Hamiltonian,

H=K+U, (1.1)

where K and U are the kinetic and potential energies, respectively. The
kinetic energy K is defined in a standard way,

K= "; ; (%)2, (1.2)

where m, is the particle mass and z,, is the coordinate of the n-th particle
in the chain. The potential energy U of the chain shown in Fig. 1.1 consists
of two parts,

U = Usub + Uint- (13)

The first term Uy, characterizes the interaction of the chain with an external
periodic on-site potential, taken in the simplest form,

ol 5 [1 — cos (2””” , (1.4)
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