Harnessing Biotechnology for the 21st Century

EDITED BY
Michael R. Ladisch
and
Arindam Bose

Harnessing Biotechnology for the 21st Century

EDITED BY

Michael R. Ladisch
Purdue University
and
Arindam Bose
Pfizer Central Research

Proceedings of the Ninth International Biotechnology Symposium and Exposition, Crystal City, Virginia, August 16–21, 1992

American Chemical Society, Washington, DC 1992

Library of Congress Cataloging-in-Publication Data

International Biotechnology Symposium and Exposition (9th: 1992: Crystal City, Va.)

Harnessing biotechnology for the 21st century: proceedings of the the Ninth International Biotechnology Symposium and Exposition, Crystal City, Virginia, August 19–21, 1992 / Michael R. Ladisch, editor, Arindam Bose, editor.

cm.—(Conference proceedings series (American Chemical Society)).

Includes bibliographical references and index.

ISBN 0-8412-2477-3

- 1. Biotechnology-Congresses.
- I. Ladisch, Michael R., 1950- . II. Bose, Arindam, 1952- . III. Title. IV. Series

TP248.14.I56 1992 660'.6—dc20

92-21791 CIP

The paper used in this publication meets the minimum requirements of American National Standard for Information Sciences—Permanence of Paper for Printed Library Materials, ANSI Z39.48–1984.

Copyright © 1992

American Chemical Society

All Rights Reserved. The appearance of the code at the bottom of the first page of each chapter in this volume indicates the copyright owner's consent that reprographic copies of the chapter may be made for personal or internal use or for the personal or internal use of specific clients. This consent is given on the condition, however, that the copier pay the stated per-copy fee through the Copyright Clearance Center, Inc., 27 Congress Street, Salem, MA 01970, for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law. This consent does not extend to copying or transmission by any means—graphic or electronic—for any other purpose, such as for general distribution, for advertising or promotional purposes, for creating a new collective work, for resale, or for information storage and retrieval systems. The copying fee for each chapter is indicated in the code at the bottom of the first page of the chapter.

The citation of trade names and/or names of manufacturers in this publication is not to be construed as an endorsement or as approval by ACS of the commercial products or services referenced herein; nor should the mere reference herein to any drawing, specification, chemical process, or other data be regarded as a license or as a conveyance of any right or permission to the holder, reader, or any other person or corporation, to manufacture, reproduce, use, or sell any patented invention or copyrighted work that may in any way be related thereto. Registered names, trademarks, etc., used in this publication, even without specific indication thereof, are not to be considered unprotected by law.

PRINTED IN THE UNITED STATES OF AMERICA

Harnessing Biotechnology for the 21st Century

1992 Advisory Board

ACS Conference Proceedings Series

M. Joan Comstock, Series Editor

V. Dean Adams Tennessee Technological University

Mark Arnold University of Iowa

David Baker University of Tennessee

Alexis T. Bell University of California—Berkeley

Arindam Bose Pfizer Central Research

Robert F. Brady, Jr. Naval Research Laboratory

Margaret A. Cavanaugh National Science Foundation

Dennis W. Hess Lehigh University

Hiroshi Ito IBM Almaden Research Center

Madeleine M. Joullie University of Pennsylvania

Mary A. Kaiser
E. I. du Pont de Nemours and
Company

Gretchen S. Kohl Dow-Corning Corporation Bonnie Lawlor
Institute for Scientific Information

John L. Massingill
Dow Chemical Company

Robert McGorrin Kraft General Foods

Julius J. Menn
Plant Sciences Institute,
U.S. Department of Agriculture

Vincent Pecoraro University of Michigan

Marshall Phillips
Delmont Laboratories

A. Truman Schwartz Macalaster College

John R. Shapley University of Illinois at Urbana—Champaign

Stephen A. Szabo Conoco Inc.

Robert A. Weiss University of Connecticut

Peter Willett University of Sheffield (England)

Message from the Chair

BIOTECHNOLOGY HAS CHANGED DRAMATICALLY since our first symposium (formerly named Fermentation Technology Symposium), which was held in Japan in 1960. Today, molecular biology tools are used in health care, animal nutrition, chemical production, and agriculture. These tools were not even thought of in 1960. If we compare the technical presentations from the 1960 symposium to our program in 1992, we see few similarities between the two symposia.

The Organizing and Program Committees developed 11 symposia, which contain 36 sessions. A total of 185 invited papers will be presented, representing worldwide biotechnology researchers.

I am pleased to inform you that a conference proceedings has been prepared and will be available during and after this symposium. The proceedings was edited by Michael R. Ladisch of Purdue University and by Arindam Bose of Pfizer Central Research.

I hope that you enjoy the oral presentations at the Ninth International Biotechnology Symposium and that you will obtain a copy of the symposium proceedings.

DANIEL I. C. WANG Chevron Professor of Chemical Engineering Massachusetts Institute of Technology Cambridge, MA 02139

June 1, 1992

Host

American Chemical Society Division of Biochemical Technology

Sponsor

International Union of Pure and Applied Chemistry

Cosponsors

Society for Industrial Microbiology American Society for Microbiology American Institute of Chemical Engineers

Distinguished Corporate Sponsors

Abbott Laboratory

Alafi Capital

Amgen

Biogen

Cowen & Company

Genentech

Hoffman-LaRoche, Inc.

Johnson & Johnson

Merck, Sharp & Dohme

Miles/Cutter/Bayer

Pennie & Edwards

Pfizer Company

Sandoz

Schering-Plough

Corporate Sponsors

Archer Daniel Midland Company

Associated Bioengineering Consultants

Amoco

Bristol-Myers Squibb

Chemap

Coors Biotech

Cytogen Genzyme

Glaxo

Jacob Engineering

Monsanto

New Brunswick Scientific

Promega

Rhone-Poulenc Rorer

SmithKline Beecham

Synergen

Teltech

U.S. Department of Agriculture

Organizing Committee

Chair

Daniel I. C. Wang, Massachusetts Institute of Technology

Secretary-Treasurer

Arindam Bose, Pfizer Central Research

James E. Bailey
California Institute of Technology

Michael C. Flickinger University of Minnesota

Stephen W. Drew Merck & Company, Inc.

Arthur E. Humphrey Pennsylvania State University

Robert W. Eltz

Monsanto Company

Dianne B. Ruddy
American Chemical Society

Program Committee

Barry C. Buckland Merck & Company, Inc.

Anil S. Menawat Tulane University

John P. Cherry U.S. Department of Agriculture

James E. Rollings Worcester Polytechnic Institute

Douglas S. Clark

University of California—Berkeley

Dewey Y. Ryu

University of California—Berkeley University of California—Davis

Charles L. Cooney

Massachusetts Institute of Technology

Gregory N. Stephanopoulos

Massachusetts Institute of Technology

Arnold Hershman Monsanto Company James R. Swartz Genentech, Inc.

Michael R. Ladisch Purdue University

J. Gregory Zeikus

Michigan Biotechnology Institute

Preface

The International Union of Pure and Applied Chemistry sponsors a conference on biotechnology every four years. The intent of these conferences has been to provide a snapshot of the underlying science and the enabling technology that have allowed commercialization of biotechnology. The proceedings of the earlier conferences of this series have become valuable reference volumes for academicians, practicing scientists, and engineers in industry. We hope this volume will continue to fill that need.

The generally accepted definition of biotechnology is that it "includes any technique that uses living organisms (or parts of organisms) to make or modify products, to improve plants or animals, or to develop microorganisms for specific uses" (U.S. Congress, Office of Technology Assessment; Commercial Biotechnology: An International Analysis; OTA-BA-218, 1984). This definition encompasses both the "old biotechnology" (for example, production of organic acids and antibiotics by fermentation) as well as the "new biotechnology" (i.e., processes employing microorganisms, plants, or animals that have been modified by recombinant DNA or by other modern genetic manipulation techniques). Biotechnology has been contributing to human well-being for thousands of years—beginning with the use of microorganisms to ferment foods during the dawn of civilization to the wonder drugs (antibiotics, anthelmintics, and cholesterol-lowering agents) of the present era. The principal impact of the new biotechnology has so far been in the pharmaceuticals arena. However, introduction of new products and services in the areas of agriculture, food additives, energy production, and waste treatment are imminent. The Program Committee of the Ninth International Biotechnology Symposium strove to attain a balance between the coverage of the old and the new biotechnology when assembling the technical program for this conference.

The schedule of oral presentations at this symposium consists of 185 invited papers. Care was taken to ensure that approximately half of the presenters were from outside North America. Each invited lecturer was requested to submit a manuscript for inclusion in this proceedings volume. The submitted papers have been organized into 11 symposia, each of which is subdivided into two or more sessions.

The first three symposia include topics in molecular genetics, biochemistry, and microbiology and provide the scientific basis for the manipulation of organisms constituting commercially significant biotechnology production systems. The fourth symposium covers biocatalysis, including cutting-edge issues such as catalytic antibodies and the use of enzymes in novel organic synthesis tasks.

Biochemical engineering topics (microbial and animal cell bioreactors, product

recovery, and monitoring and control of bioprocesses) are the subject of the next three symposia. For the new protein biopharmaceuticals, the cost of product recovery and formulation can often exceed 80% of total bulk drug production cost versus generally less than 50% of total cost for fermentation-derived antibiotics. Thus, a considerable incentive to develop new separation processes for those biopharmaceuticals exists. Most of the papers in Symposium VI address aspects of protein processing, including folding or refolding and formulation.

Within the next decade, the new biotechnology is likely to have a significant commercial impact on agriculture, treatment of wastes, and production of liquid fuels from renewable resources. The sessions on bioremediation, impacts of transgenic plants, and biomass utilization contain contributions from many leading researchers in those fields. Finally, to illustrate the potential of biotechnology in promoting economic development, descriptions of relevant projects in several developing countries are included in Symposium XI.

Any biotechnology development project, by its very nature, is an interdisciplinary effort with life scientists, engineers, and regulatory professionals working closely together. That diversity is also reflected in these proceedings. Specific sections of this book may be of interest primarily to certain groups of professionals. However, we shall consider our efforts in editing this volume worthwhile if a reader finds something useful in papers that are outside the area of his or her expertise.

We thank the numerous corporations, government agencies, and individuals (listed elsewhere in this volume) whose generous financial support made the organization of this conference possible. Special recognition is owed to our Distinguished Corporate Sponsors; their offers of financial support early in the conference planning cycle allowed us to attract prominent speakers from outside North America. We thank Norma Leuck for her assistance in ensuring the timely completion of this volume. We are also grateful to Dianne Ruddy, Latisha Best, and Michelle Hicks of the American Chemical Society's Meetings Department for handling the administrative chores and local arrangements for the conference. Finally, our heartfelt thanks are due to Cheryl Shanks and the staff of the American Chemical Society's Books Department for making this volume possible.

MICHAEL R. LADISCH Laboratory for Renewable Resources Engineering Purdue University West Lafayette, IN 47907

ARINDAM BOSE Bioprocess Research and Development Pfizer Central Research Groton, CT 06340

June 15, 1992

Production: Margaret J. Brown Indexing: Deborah H. Steiner Acquisition: Cheryl Shanks Cover design: Amy Hayes

Printed and bound by Victor Graphics, Baltimore, MD

此为试读, 需要完整PDF请访问: www.ertongbook.com

Bestsellers from ACS Books

The ACS Style Guide: A Manual for Authors and Editors
Edited by Janet S. Dodd
264 pp; clothbound, ISBN 0-8412-0917-0; paperback, ISBN 0-8412-0943-X

Chemical Activities and Chemical Activities: Teacher Edition
By Christie L. Borgford and Lee R. Summerlin
330 pp; spiralbound, ISBN 0-8412-1417-4; teacher ed. ISBN 0-8412-1416-6

Chemical Demonstrations: A Sourcebook for Teachers,
Volumes 1 and 2, Second Edition
Volume 1 by Lee R. Summerlin and James L. Ealy, Jr.;
Vol. 1, 198 pp; spiralbound, ISBN 0-8412-1481-6;
Volume 2 by Lee R. Summerlin, Christie L. Borgford, and Julie B. Ealy
Vol. 2, 234 pp; spiralbound, ISBN 0-8412-1535-9

Writing the Laboratory Notebook
By Howard M. Kanare
145 pp; clothbound, ISBN 0-8412-0906-5; paperback, ISBN 0-8412-0933-2

Developing a Chemical Hygiene Plan

By Jay A. Young, Warren K. Kingsley, and George H. Wahl, Jr.
paperback, ISBN 0-8412-1876-5

Introduction to Microwave Sample Preparation: Theory and Practice
Edited by H. M. Kingston and Lois B. Jassie
263 pp; clothbound, ISBN 0-8412-1450-6

Principles of Environmental Sampling
Edited by Lawrence H. Keith
ACS Professional Reference Book; 458 pp;
clothbound; ISBN 0-8412-1173-6; paperback, ISBN 0-8412-1437-9

Biotechnology and Materials Science: Chemistry for the Future
Edited by Mary L. Good (Jacqueline K. Barton, Associate Editor)
135 pp; clothbound, ISBN 0-8412-1472-7; paperback, ISBN 0-8412-1473-5

Personal Computers for Scientists: A Byte at a Time
By Glenn I. Ouchi
276 pp; clothbound, ISBN 0-8412-1000-4; paperback, ISBN 0-8412-1001-2

Polymers in Aqueous Media: Performance Through Association
Edited by J. Edward Glass
Advances in Chemistry Series 223; 575 pp;
clothbound, ISBN 0-8412-1548-0

For further information and a free catalog of ACS books, contact:
American Chemical Society
Distribution Office, Department 225
1155 16th Street, NW, Washington, DC 20036
Telephone 800–227–5558

Highlights from ACS Books

Good Laboratory Practices: An Agrochemical Perspective
Edited by Willa Y. Garner and Maureen S. Barge
ACS Symposium Series No. 369; 168 pp; clothbound, ISBN 0-8412-1480-8

Silent Spring Revisited

Edited by Gino J. Marco, Robert M. Hollingworth, and William Durham 214 pp; clothbound, ISBN 0-8412-0980-4; paperback, ISBN 0-8412-0981-2

Insecticides of Plant Origin

Edited by J. T. Arnason, B. J. R. Philogène, and Peter Morand ACS Symposium Series No. 387; 214 pp; clothbound, ISBN 0-8412-1569-3

Chemistry and Crime: From Sherlock Holmes to Today's Courtroom

Edited by Samuel M. Gerber

135 pp; clothbound, ISBN 0-8412-0784-4; paperback, ISBN 0-8412-0785-2

Handbook of Chemical Property Estimation Methods

By Warren J. Lyman, William F. Reehl, and David H. Rosenblatt

960 pp; clothbound, ISBN 0-8412-1761-0

The Beilstein Online Database: Implementation, Content, and Retrieval
Edited by Stephen R. Heller
ACS Symposium Series No. 436; 168 pp; clothbound, ISBN 0-8412-1862-5

Materials for Nonlinear Optics: Chemical Perspectives
Edited by Seth R. Marder, John E. Sohn, and Galen D. Stucky
ACS Symposium Series No. 455; 750 pp; clothbound; ISBN 0-8412-1939-7

Polymer Characterization:

Physical Property, Spectroscopic, and Chromatographic Methods
Edited by Clara D. Craver and Theodore Provder
Advances in Chemistry No. 227; 512 pp; clothbound, ISBN 0-8412-1651-7

From Caveman to Chemist: Circumstances and Achievements
By Hugh W. Salzberg
300 pp; clothbound, ISBN 0-8412-1786-6; paperback, ISBN 0-8412-1787-4

The Green Flame: Surviving Government Secrecy
By Andrew Dequasie
300 pp; clothbound, ISBN 0-8412-1857-9

For further information and a free catalog of ACS books, contact:
American Chemical Society
Distribution Office, Department 225
1155 16th Street, NW, Washington, DC 20036
Telephone 800–227–5558

Other ACS Books

Biotechnology and Materials Science: Chemistry for the Future
Edited by Mary L. Good
160 pp; clothbound, ISBN 0-8412-1472-7, paperback, ISBN 0-8412-1473-5

Chemical Demonstrations: A Sourcebook for Teachers

Volume 1, Second Edition by Lee R. Summerlin and James L. Ealy, Jr.

192 pp; spiral bound; ISBN 0-8412-1481-6

Volume 2, Second Edition by Lee R. Summerlin, Christie L. Borgford, and Julie B. Ealy
229 pp; spiral bound; ISBN 0-8412-1535-9

The Language of Biotechnology: A Dictionary of Terms
By John M. Walker and Michael Cox
ACS Professional Reference Book; 256 pp;
clothbound, ISBN 0-8412-1489-1; paperback, ISBN 0-8412-1490-5

Cancer: The Outlaw Cell, Second Edition
Edited by Richard E. LaFond
274 pp; clothbound, ISBN 0-8412-1419-0; paperback, ISBN 0-8412-1420-4

Chemical Structure Software for Personal Computers
Edited by Daniel E. Meyer, Wendy A. Warr, and Richard A. Love
ACS Professional Reference Book; 107 pp;
clothbound, ISBN 0-8412-1538-3; paperback, ISBN 0-8412-1539-1

Practical Statistics for the Physical Sciences
By Larry L. Havlicek
ACS Professional Reference Book; 198 pp; clothbound; ISBN 0-8412-1453-0

The Basics of Technical Communicating
By B. Edward Cain
ACS Professional Reference Book; 198 pp;
clothbound, ISBN 0-8412-1451-4; paperback, ISBN 0-8412-1452-2

The ACS Style Guide: A Manual for Authors and Editors
Edited by Janet S. Dodd
264 pp; clothbound, ISBN 0-8412-0917-0; paperback, ISBN 0-8412-0943-X

Personal Computers for Scientists: A Byte at a Time
By Glenn I. Ouchi
276 pp; clothbound, ISBN 0-8412-1000-4; paperback, ISBN 0-8412-1001-2

Chemistry and Crime: From Sherlock Holmes to Today's Courtroom
Edited by Samuel M. Gerber
135 pp; clothbound, ISBN 0-8412-0784-4; paperback, ISBN 0-8412-0785-2

For further information and a free catalog of ACS books, contact:

American Chemical Society
Distribution Office, Department 225
1155 16th Street, NW, Washington, DC 20036
Telephone 800–227–5558

FRONTIERS IN POLYPEPTIDE PRODUCTION SYMPOSIUM I

J. R. Swartz and T. Imanaka: Co-Chairs

Expression in Prokaryotes: Session AJ. R. Swartz and T. Imanaka: *Co-Chairs*

Expressing, Processing, and Secretion in Eukaryotes: Session B C. F. Goochee and W. Fiers: Co-Chairs

Expression in Transgenic Systems: Session C W. H. Velander and R. Strijker: Co-Chairs

OPTIMIZATION OF HETEROLOGOUS GENE EXPRESSION USING GRAM NEGATIVE BACTERIA

Allan R. Shatzman

SmithKline Beecham Pharmaceuticals, King of Prussia, PA 19405

Phone: (215) 270-7732; Fax: (215) 270-7962

The last 3-4 years has seen considerable growth in the use of a wide range of gram negative bacteria (e.g. Salmonella Typhimurium, Pseudomonas putida, and Zymomonas mobilis) for the expression of heterologous gene products. However, Escherichia coli has been and continues to be the work horse of the microbial gene expression field. No other system has been developed (thus far) that can not only express virtually any gene product at levels sufficient for detailed biochemical analysis or product development but also express undefined coding sequences (open reading frames) in amounts sufficient to determine the identity of the gene product and to characterize its function. I will describe advances made over the last few years in our ability to optimize the expression of heterologous gene products in E. coli with respect to both quantity and quality of the proteins being produced with the understanding that many of these same approaches can be applied to heterologous gene expression in other gram negative bacteria.

Literally hundreds of papers are published each year in which it has been reported that genes of prokaryotic or eukaryotic origin have been cloned and expressed in E. coli. The ability to express this myriad of genes has been aided by the development of numerous expression vector systems which use highly efficient, regulated, transcriptional regulatory signals to optimize production (for a review see Brosius, 1988). We, (Shatzman and Rosenberg, 1985) and others (e.g. Schauder and McCarthy, 1989) have shown that optimization of translational regulatory signals [ribosome binding sites (RBS)] is equally important to the optimization of heterologous gene expression. For example, in our laboratories, we have seen high levels of expression of various viral antigens using a phage \(\lambda \) PI promoter coupled with translation initiation using the phage λ cII RBS. In contrast, little, if any, expression of these same antigens was obtained using a pTac promoter and lacZ RBS. In fact, this result had nothing to do with the promoter chosen to drive transcription as equal levels of gene specific message were obtained following induction of both vector systems. Instead, the differences in expression were due solely to translation initiation. When mutations were introduced into the lacZ RBS to make it identical to the cII

RBS, equivalent levels of antigen expression were obtained from both promoter systems.

Over the last few years, the focus on the optimization of gene expression has gone beyond the study of regulatory signals to now include alterations in the coding sequence to be expressed. In addition, major efforts have now been made to understand factors which affect not only levels of production, but also the quality (solubility, homogeneity, folding) of the products themselves. It is these newer efforts which I will now focus on.

Optimization of gene expression via alterations in the coding sequence

Initial efforts to express a heterologous gene in \underline{E} . coli can often lead to less than desirable results with respect to the quantity of protein produced. In some of these cases, even the use of several different transcriptional or translational regulatory signals does not improve the level of protein production. Several reports have been published which show that production of such gene products can be dramatically improved by making alterations within the gene coding sequence. For example, Seow et al. (1989) reported that expression of human tumor necrosis factor (TNF)- β could be

increased from undetectable levels to 34% of total cell protein (TCP) by introducing silent mutations throughout the gene, which result in optimal codon utilization for \underline{E} . coli, and also mutations in the 5 end of the gene, which minimize the development of secondary

structure in that region of the message. Interestingly, expression levels were quite low (1-2% of TCP) if only the changes minimizing secondary structure were made, while no expression was detected when only the codon optimization changes were present. In contrast, others have shown that a more random approach to coding sequence alterations can result in vastly improved expression levels. Devlin et al. (1988) and Sathe et al. (1990) demonstrated that expression of human granulocyte stimulating factor could be increased from undetectable levels to almost 20% of total soluble protein by altering G and C residues in the 5' end of the gene to A and T resideus without affecting the protein sequence. These changes actually greatly decreased the presence of preferred codons in this region of the gene and did not create any significant changes in mRNA secondary structure. Reduction in the GC content of the 5' end of the bovine growth hormone gene has also yielded increased expression levels in E. coli (Hsiung and MacKellar, 1987).

While we have had many successes in our laboratories using this approach, random replacement of G-C base pairs with AT proved unsuccessful in optimizing the expression of human alpha-1-antitrypsin (A1AT). Only by using a process of mutagenesis and genetic selection were we able to find mutations in the 5' end of the A1AT coding sequence which allowed us to achieve expression of A1AT at 10% of TCP in contrast to <0.1% of TCP when the native coding sequence was used (Sutiphong et al. 1987).

Improved production of soluble and active proteins in E. coli

Typically, the first concern in heterologous gene expression is "how much can be made." However, after achieving high level expression, attention then must focus on the utility of the product for, unfortunately, most heterologous gene products expressed in <u>E</u>. <u>coli</u> are not produced in an active properly folded, or soluble form. Instead, most recombinant proteins accumulate as insoluble aggregates or inclusion bodies in the cytoplasm of the bacteria.

Considerable efforts have recently been made to understand what causes these proteins to be insoluble and to find ways of expressing these proteins in more soluble, active forms. Schein (1989) compiled a list of nine suggested reasons for the formation of inclusion bodies in E. coli which includes: excessively high rates of production, which do not allow sufficient time to achieve correct folding; high local concentrations of product leading to precipitation; and lack of post-translational modifying enzymes or foldases necessary to achieve the correct conformation.

Expression of subtilisin in E. coli using a high-expression vector under standard growth and induction conditions was recently shown to lead to production of an insoluble product from which very little properly folded and active subtilisin could be obtained (Takagi, et al, 1990). However, when cells were grown at 23°C instead of 37°C, an increase in active subtilisin of up to 14-fold was achieved. Further studies showed that a reduction in the concentration of inducer used in this expression system could increase levels of active product even with growth at 37°C. When both temperature and inducer concentrations were adjusted, active product accumulated at levels 16-fold above those found under standard production conditions. These studies suggest that the rate at which a protein is made can affect its ability to fold properly. Similar effects of culture temperature on product solubility have been observed for the production of human interferon a2 (Schein, et al, 1988). In these studies, overproduction of interferon at 37°C yielded only 5% soluble, active protein while growth at 28-30°C produced 73% soluble product. Thus, although total interferon production at 37°C was three times greater than at 28-30°C, the lower production temperature actually yielded a seven-fold increase in active product.

Work in our laboratories over the last 2 years have also shown that product solubility and