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PREFACE

In this book, the authors discuss the types, performance impact and
advantages/disadvantages of network topologies. Topics include the analysis
of the topological structure of networks and related problems via simple rules;
application of artificial neural networks in the diagnosis of coronary heart
disease; network topology, signal function pathways and cell function; model-
based risk analysis of complex networks; and network analysis of clinical,
medical and molecular data in systems science.

Chapter 1 - It has been widely recognized that networks is a good tool for
describing various artificial and natural systems. Thus, a natural problem
arises: how to construct networks and further properly study its features. At
present, it is still lack of basic laws for describing the quantitative relationships
in biological networks, social networks, etc. Therefore, the construction
method of networks should be different from that used to build up the
mathematical models in the past based on the quantitative relationships in
various scientific fields, such as physics and mechanics. In this chapter, the
authors provide a new method to construct networks via simple rules and
further study related problem. The main feature of the method is that simple
basic rules for constructing networks are firstly proposed based on the current
scientific understanding of the problems discussed, and then the networks is
builded up through these rules, and further the rationality of the rules is
evaluated by comparing the topological characteristics of the constructed
networks with those measured from real networks, related problem is finally
analyzed using the obtained reasonable network models. Two examples will
be given to illustrate the research approach. One example is about the
modeling of protein-protein interaction networks and the other example is
about the positioning of wireless sensor networks.
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Chapter 2 - The present research is aimed to develop an ANN diagnostic
model for the coronary atherosclerosis and ischemia for patients after coronary
angiography on the basis of genetic, clinical laboratory and instrumental
examination data. The analysis of the correlation between the signs allowed us
to choose the factors most closely connected with the diagnosis. Hierarchical
clustering and correlation analysis were adapted to allocate typical fields of
diagnostic factors. Various types of ANN topologies (MLP, SVM, PCA, and
hybrid network) were analyzed; the authors have found that the models based
on ANN with principal components analysis, and double-layer perceptron
ANN optimized with genetic algorithms achieve the best diagnostic efficacy.

Chapter 3 - The living beings continuously receive, process and respond to
a myriad of signals. To this aim several transduction pathways have evolved,
giving rise an amazingly complex functional dialogue into and among cells.
Modern analytical techniques (such as 2D electrophoresis, DNA microarray,
protein chips, etc...) increased dramatically our knowledge about the
molecules involved in these signaling events and allowed the discovery of
several biochemical determinants of signal transduction. Despite scientific
community expectations, the applicative benefit of this always increasing
information to date are scarce. In the authors opinion, this is due to the
intrinsic complexity of biological beings, from molecules to cells, from tissues
to organs, that make necessary the adoption of the computational modeling
strategies. In this context, the authors adopted a biological networks-based
approach to study the topology of signal transmission pathways. In particular
the authors have realized and statistically analyzed the main topological
indexes of biological networks representing the molecular events involved in
11 pathways of relevant importance for human biology [smooth and striated
muscle contraction, release cycle of six neurotransmitters, visual
phototransduction (rods), sperm capacitation, insulin signaling pathway, p53
pathway, regulation of retinoblastoma protein (pRb), mitochondrial ATP
metabolism, glucose metabolism, signaling events mediated by stem cell
factor receptor c-Kit and the circadian clock]. As a result the authors have
found that the number of molecules composing each network is likely due to
the balancing of energetic cost of each molecule and the need of system
stability. In addition, the authors demonstrated that all the examined networks
showed the same scale free topology and small world behavior with a clearly
non hierarchical structure, unlike other biological networks. In particular the
clustering coefficient (i.e. the measure of how each network node tend to
cluster to other ones) was virtually zero and it was unrelated to the number of
links per node, the characteristic path length (the measure of how many links it
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is necessary to pass through to travel between two random selected nodes) was
about 6 and the averaged number of link per node ranged between 2 and 2.8.
From these findings, it is possible to conclude that all examined pathways
share the same topology that confers them some important biological features
such as robustness against random failure, controllability, and specificity and
efficiency in signal transmission, which are the specific signature of signal
transduction pathways.

Chapter 4 - Model-based Risk Analysis (MBRA) is a method and tool for
analyzing complex system risk as defined by a network of components and
their links to one another. Network risk is defined as the expected consequence
across all nodes and links of the network. Network nodes and links are the
fundamental assets represented in MBRA. Nodes can be anything — a building,
tunnel, computer, water pump, reservoir, power substation, person, group, or
telecommunication switching office. Links can be anything: a power line,
familial relation, pipe, Internet fiber optic cable, or virtual dependency. Nodes
and links have properties: values needed to compute risk as well as network
properties such as number of connections, betweeness, and height.

MBRA employs fault trees to model multiple threats arrayed against
single or multiple nodes; and expected utility theory (EUT) to compute overall
network risk. In addition to calculating EUT risk, MBRA performs various
modeling and simulation functions as follows:

1 Network properties: compute degree, betweeness, height, and
contagiousness.

2 Objectives: optimize on risk, vulnerability, probability of failure, and
consequence.

3 Resource allocation: distribute budgets across nodes and links such
that one of the objectives listed in 2 is optimized.

4 Return on Investment Analysis: analyze changes in objectives versus
investment in threat, prevention, and response capability.

5 Cascades: simulate cascade failures precipitated by a single failure.

6 Flow: simulate the loss of flows through the network due to a single
failure.

7 Displays: calculate and display the exceedence probability generated

by simulation of faults in the cascade and flow simulations.

Threat analysis: model threats versus nodes and links as a fault tree.

9 Game theory: simulate a 2-person game and find optimal allocations
of threat, vulnerability, and response investments using Stackleberg
optimization.

oo
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10 Exceedence probability analysis and probable maximum loss analysis
(an approach favored by the insurance industry).

MBRA has been used since 2006 to analyze dozens of critical
infrastructure systems of interest to homeland security. Applications have
mainly come from students doing classroom projects. Experience has showed
that MBRA can be extremely expressive and capable of analyzing complete
systems of all kinds and sizes. Some of MBRA’s limitations have become
apparent: threat, vulnerability, and consequence decrease as an exponential
function of investment — a model that may not represent reality. Additionally,
cascade failure probability in some systems, such as a power grid collapse or
flood, actually increases as a collapse is taking place. MBRA assumes
likelihood of collapse is a constant. Finally, MBRA does not model dynamical
systems with feedback loops. It assumes directional or bidirectional flows, but
does not model dynamic feedback. MBRA is freely available at
www.CHDS.us for Windows and Macintosh operating systems.

Chapter 5 - Cancer is a large class of diseases. Systems level analysis of
complex diseases such as cancer requires the analysis of relationships between
different types of clinical as well as molecular data. Chemotherapy, in addition
to radiotherapy and surgery, is used to treat cancers. However, cancer drugs
mostly target general processes, i.e. DNA synthesis, toinhibit cell division. A
recent trend has been to use targeted chemotherapy, to more selectively treat
specific types of cancer. Systems science is the analysis of the global
organization of the relationships between groups, i.e. the different types of
diseases and drugs, and is in contrast to traditional approaches of analyzing
individual parts of a system. Such analyses have provided an understanding of
the combined clinical and molecular aspects of diseases such as cancer.
Networks of diseases, drugs, and genes showed unexpected connectivity for
particular members, correlations between the connectivity with
epidemiological features, etc. Network analysis of clinical, medical and
molecular data is a promising branch of systems science.
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Chapter 1

ANALYZING THE TOPOLOGICAL
STRUCTURE OF NETWORKS AND RELATED
PROBLEMS VIA SIMPLE RULES

Shuiming Cai', Qinbin He’ and Zengrong Liu™*
IFaculty of Science, Jiangsu University, China
2Department of Mathematics, Taizhou University, China
YInstitute of Systems Biology, Shanghai University, China

ABSTRACT

It has been widely recognized that networks is a good tool for
describing various artificial and natural systems. Thus, a natural problem
arises: how to construct networks and further properly study its features.
At present, it is still lack of basic laws for describing the quantitative
relationships in biological networks, social networks, etc. Therefore, the
construction method of networks should be different from that used to
build up the mathematical models in the past based on the quantitative
relationships in various scientific fields, such as physics and mechanics.
In this chapter, we provide a new method to construct networks via
simple rules and further study related problem. The main feature of the
method is that simple basic rules for constructing networks are firstly
proposed based on the current scientific understanding of the problems
discussed, and then the networks is builded up through these rules, and

* Email: zrongliu@126.com.



o

Shuiming Cai, Qinbin He and Zengrong Liu

further the rationality of the rules is evaluated by comparing the
topological characteristics of the constructed networks with those
measured from real networks, related problem is finally analyzed using
the obtained reasonable network models. Two examples will be given to
illustrate the research approach. One example is about the modeling of
protein-protein interaction networks and the other example is about the
positioning of wireless sensor networks.

I. INTRODUCTION

In recent years, with the rapid development of information technology and
science technology as well as the extensive cross-penetration among various
disciplines, complex networks have become a hot research field and attracted
much attention from the scientific communities. Actually, if using nodes or
vertices to represent basic elements with certain dynamical characteristics and
information systems, while edges or links to represent the relationship or
connection of these basic elements, then a wide range of systems in nature and
society can be described by models of complex networks consisting of nodes
connected by edges. For example, the cell can be described as a complex
network of chemicals connected by chemical reactions; the Internet is a
complex network of routers and computers linked by various physical or
wireless links; the World Wide Web (WWW) is an enormous virtual network
of webpages connected by hyperlinks. Other examples include food webs,
social networks, organizational networks, coauthorship and citation networks
of scientists, neural networks, cellular and metabolic networks, protein-protein
interaction networks, electronic power grids, etc., [1-3]. The ubiquity of
complex networks in science and technology has naturally led to a set of
common and important research problems. Among them, the most basic issues
are how to characterize network anatomy since structure always affects
function. For instance, the topology of social networks affects the spread of
information and disease, and the topology of the power grid affects the
robustness and stability of power transmission [1].

In the early days, the study of complex networks always adopted an
implicit assumption that the interaction patterns among the individuals of the
networks can be embedded onto a regular and perhaps universal structure such
as a Euclidean lattice. However, a number of studies have suggested that most
real-life networks have no apparent design principles, and so they cannot be
described as regular graphs. In late 1950s, two Hungarian mathematicians Paul
Erdos and Alfred Renyi proposed an Erdos-Renyi (ER) random graph model
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to describe a network with complex topology [4]. Their work had laid a
foundation of the random network theory, followed by intensive studies in the
next 40 years and even today. Random graphs have been proposed as the
simplest and most straightforward realization of large-scale networks with no
apparent design principles. But our intuition clearly indicates that many real-
life complex networks are neither completely regular nor completely random.
Diverse complex systems, such as the cell and the Internet, must display some
organizing principles which should be at some level encoded in their topology
as well [2]. Therefore, tools and measures to capture in quantitative terms the
underlying organizing principles need to be developed.

In the past few years, the computerization of data acquisition in all fields
and the availability of high computing power have led to the emergence of
huge databases on the topology of various real networks. The public access to
the huge amount of real data has in turn stimulated great interest in trying to
uncover the generic properties of different kinds of complex networks [5]. As
a result, many quantities and measures have been proposed to characterize the
structural properties of networks in recent years [6, 7]. In this endeavor, two
significant discoveries are the small-world effect and the scale-free feature of
most real-life complex networks [8, 9]. In addition, many other interesting
topological properties of complex networks have also been revealed, such as
hierarchical modularity and disassortativity [10-12]. These empirical findings
naturally lead to a problem: how to construct networks that can reproduce the
known structural properties observed in real network, since the models
proposed in mathematical graph theory turned out to be very far from the real
needs. Moreover, modeling the structure of a complex network would also
lead to a better knowledge of its evolutionary mechanisms and to a better
cottoning on its dynamical and functional behavior [7].

Unfortunately, it is usually lack of clear quantitative relationships in the
complex network modeling, but only some descriptive terms are given therein.
This results in the construction method of networks should be different from
that used to build up the mathematical models in the past based on the
quantitative relationships in various scientific fields, such as physics and
mechanics. Consequently, there exists a problem of how to give some simple
rules to construct the network model based on these descriptive terms. The
main purpose of this chapter is to provide some introduction and insights into
this problem, with emphasis on how to extract some simple rules from these
descriptive terms, and then to construct the network model via these simple
rules for achieving the goal of modeling. Two examples will be given to
illustrate the research approach. One example is about the modeling of protein
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interaction networks [13] and the other example is about the positioning of
wireless sensor networks [14].

I1. SOME BASIC CONCEPTS

In this section, we shall first introduce some definitions and notations, and
then provide a brief review of several important quantities used to describe the
topology of a network.

Definitions and Notations

Graph theory is the natural framework for the exact mathematical
treatment of complex networks and, formally, a complex network can be
represented as a graph. An undirected graph G consists of two sets N(G) and

E(G). such that N(G)# & and E(G) is a set of unordered pairs of elements
of N(G)- The elements of N(G)= {ny,ny, ---,ny} are the nodes (or vertices,
or points) of the graphG, while the elements of E(G)= {e. €y, ...,ex } are its
edges (or links, or lines). The number of elements in N(G) and E(G) are

denoted by N and K, respectively. A node is usually referred to by its order
i in the set N(G)- In a undirected graph, each of the edges is defined by a pair

of nodes i and j, and is denoted as (i, j) or e The edge is said to be

incident in nodes j and j, or to join the two nodes; the two nodes i and ; are
referred to as the end-nodes of edges (i, j). Two nodes joined by an edge are

referred to as adjacent or neighboring. The neighborhood of a node |,
henceforth represented as ()(j), corresponds to the set of nodes adjacent to

node i. In the complex network literature, it is often assumed that no loops,
i.e., edges from a node to itself, or multiple edges, i.e., couples of nodes
connected by more than one edge, exsit. Graphs with either of these elements
are called multigraphs (15, 16].

In this chapter, the emphasis will be on undirected graphs rather than
multigraphs or directed graphs. For multigraphs and directed graphs, the
reader is referred to the references [6, 7] and the books [15, 16].
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Average Degree

The simplest and perhaps also the most important characteristic of a single
node is its degree. The degree k; of a node i is usually defined to be the total

number of its connections. Thus, the larger the degree, the “more important”
the node may be in a network [5]. The average degree < k > of a network is
the average of k; for all vertices in the network, that is,

1
<k>=—Yk..
N?‘

In a sparse network, the average degree <k > usually satisfies
<k>xN [2].

Average Shortest Path Length

Shortest paths play an important role in the transport and communication
within a network. Suppose one needs to send a data packet from one computer
to another through the Internet: the geodesic provides an optimal path way,
since one would achieve a fast transfer and save system resources [7].
Therefore, shortest paths have played an important role in the characterization
of the internal structure of a network [7]. If one represents all the shortest path
lengths of a network as a matrix D in which the entry dij is the length of the

geodesic from node i to node j. The average shortest path length <L > of

the network, then, is defined as the mean of geodesic lengths over all pairs of
nodes [8]:

1

g L m——
N(N-1)

zdys

i#]

where N is the total number of nodes in the network. Here, <> determines
the effective “size” of a network, the most typical separation between two
nodes therein. In a friendship network, for example, <L> is the average
number of friends existing in the shortest chain connecting two persons in the
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network [5]. It was an interesting discovery that the average path length of
most real complex networks is relatively small, even in those cases where
these kinds of networks have many fewer edges than a typical globally
coupled network with an equal number of nodes. This smallness inferred the
small-world effect, hence the name of small-world networks [5].

Average Clustering Coefficient

A common property of social networks is that cliques form, representing
circles of friends or acquaintances in which every member knows every other
member. This inherent tendency to clustering is quantified by the clustering
coefficient, defined as the average fraction of pairs of neighbors of a node that
are also neighbors of each other [5]. Suppose that a node j in the network has
k; edges, which connect this node to k; other nodes. These nodes are all

neighbors of node i. Clearly, at most ki(k;—1)/2 edges can exist among

them, and this occurs when every neighbor of node i connected to every other
neighbors of node ;. The clustering coefficient C; of node ; is then defined as

the ratio between the number £, of edges that actually exist among these k;
nodes and the total possible number ki(k; —1)/2- namely,

2E;

]

Ci =
ki(ki~1)

.

The average clustering coefficient <(C > of the network is then given by
the average of C; over all the nodes in the network:

1
<C>=—>C,,
N? !

which characterizes the overall tendency of nodes to form clusters or groups.
By definition, () < G <l 0<<C><1;and <(C >=1 if and only if the network

is globally coupled, which means that every node in the network connects to
every other node. In a completely random network consisting of N nodes,
<C>x 1/N, which is very small as compared to most real networks. It has
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been found that most large-scale real networks have a tendency toward
clustering, in the sense that their clustering coefficients are much greater than
O(1/N). although they are still significantly less than one (namely, far away

from being globally connected) [5]. This, in turn, means that most real
complex networks are not completely random. Therefore they should not be
treated as completely random and fully coupled lattices alike.

Given the clustering coefficients of the nodes, the clustering coefficient
can be expressed as a function of the degree of the nodes [6]:

2 Cio(ki=k)

TR

where §(-) denotes Kronecker’s delta function, that is, the average clustering
coefficient of all nodes with k edges. For many real networks, this function
has C(k)ock'“. This behavior has been associated with a hierarchical

structure of the network, with the exponent p being called its hierarchical
exponent [10, 11].

Degree Distribution

Not all nodes in a network have the same number of edges. The spread in
the number of edges a node has, or node degree, over a network is
characterized by a distribution function P (k), which is the probability that a

randomly selécted node has exactly k edges. A regular lattice has a simple
degree sequence because all the nodes have the same number of edges; and so
a plot of the degree distribution contains a single sharp spike (delta
distribution) [5]. Any randomness in the network will broaden the shape of
this peak. In the limiting case of a completely random network, the degree
sequence obeys the familiar Poisson distribution; and the shape of the Poisson
distribution falls off exponentially, away from the peak value < k >. Because
of this exponential decline, the probability of finding a node with k edges
becomes negligibly small for k>> <k >. In the past few years, many
empirical results showed that for most large-scale real networks the degree
distribution deviates significantly from the Poisson distribution. In particular,



