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PREFACE

The current, prolonged boom in the US and European stock markets has increased
interest in the mathematics of security markets most notably the theory of stochastic
integration. Existing books on the subject seem to belong to one of two classes.
On the one hand there are rigorous accounts which develop the theory to great
depth without particular interest in finance and which make great demands on the
prerequisite knowledge and mathematical maturity of the reader. On the other hand
treatments which are aimed at application to finance are often of a nontechnical
nature providing the reader with little more than an ability to manipulate symbols to
which no meaning can be attached. The present book gives a rigorous development
of the theory of stochastic integration as it applies to the valuation of derivative
securities. It is hoped that a satisfactory balance between aesthetic appeal, degree
of generality, depth and ease of reading is achieved

Prerequisites are minimal. For the most part a basic knowledge of measure
theoretic probability and Hilbert space theory is sufficient. Slightly more advanced
functional analysis (Banach Alaoglu theorem) is used only once. The develop-
ment begins with the theory of discrete time martingales, in itself a charming sub-
ject. From these humble origins we develop all the necessary tools to construct the
stochastic integral with respect to a general continuous semimartingale. The limita-
tion to continuous integrators greatly simplifies the exposition while still providing
a reasonable degree of generality. A leisurely pace is assumed throughout, proofs
are presented in complete detail and a certain amount of redundancy is maintained
in the writing, all with a view to make the reading as effortless and enjoyable as
possible.

The book is split into four chapters numbered I, II, III, IV. Each chapter has
sections 1,2,3 etc. and each section subsections a,b,c etc. Items within subsections
are numbered 1,2,3 etc. again. Thus II11.4.a.2 refers to item 2 in subsection a
of section 4 of Chapter III. However from within Chapter III this item would be
referred to as 4.a.2. Displayed equations are numbered (0), (1), (2) etc. Thus
I1.3.b.eq.(5) refers to equation (5) of subsection b of section 3 of Chapter II. This
same equation would be referred to as 3.b.eq.(5) from within Chapter II and as (5)
from within the subsection wherein it occurs.

Very little is new or original and much of the material is standard and can be
found in many books. The following sources have been used:

[Ca,Cb] 1.5.b.1, 1.5.b.2, 1.7.b.0, 1.7.b.1;
[CRS] I.2.b, 1.4.a.2, 1.4.b.0;
[CW] II1.2.e.0, II1.3.e.1, III.2.e.3;
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[DD] IL1.a.6, I1.2.a.1, [1.2.2.2;

[DF] IV .3.¢;

[DT] 1.8.a.6, I1.2.¢.7, I1.2.e.9, I111.4.b.3, IIL.5.b.2;

(J] II1.3.c.4, IV.3.c.3, IV.3.c.4, IV.3.d, IV.5.e, IV.5.h;

[K] II.1.a, IL1.b;

[KS] 1.9.d, IIL.4.c.5, II1.4.d.0, IIL5.8.3, IIL5.c.4, IIL5.£1, IV.1.c.3;
[MR] IV.4.4.0, IV.5.g, IV.5.j;

[RY] L9.b, L9.c, II1.2.a.2, II1.2.d.5.
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Notation xiii

SUMMARY OF NOTATION

Sets and numbers. N denotes the set of natural numbers (N = {1,2,3,...}), R the
set of real numbers, Ry = [0,+00), R = [~00, +00] the extended real line and R"
Euclidean n-space. B(R), B(R) and B(R") denote the Borel o-field on R, E and R"
respectively. B denotes the Borel o-field on R,.. For a,b € R set a Vb = maz{a, b},

aAb=min{a,b},a” =aV0anda™ = —a AO.

OD=[0,4c0)xQ . . . . .. .. ... domain of a stochastic process

Py o oo the progressive o-field on II (II.1.a).
P -+« . . . ... thepredictable o-field on IT (II.1.a).
[$;T] ={(t,w) | S(w) <t <T(w)} . . . stochastic interval.

Random variables. (Q,F, P) the underlying probability space, G C F a sub-o-
field. For a random variable X set X* = X V0 = IL(x5qX and X~ = -X A0 =

—lix<q)X = (—X)*. Let £(P) denote the set of all random variables X such that
the expected value Ep(X) = E(X) = E(X") — E(X™) is defined (E(X*) < o0
or B(X~) < o0). For X € £(P), Eg(X) = E(X|G) is the unique G-measurable
random variable Z in £(P) satisfying E(1¢X) = E(1gZ) for all sets G € G (the
conditional expectation of X with respect to ).

Processes. Let X = (X}):>0 be a stochastic process and 7" : Q2 — [0, 0o an optional
time. Then X7 denotes the random variable (X7)(w) = Xr(,)(w) (sample of X
along T, 1.3.b, 1.7.a). X7 denotes the process XF = Xiar (process X stopped at
time T'). 8, S; and 8™ denote the space of continuous semimartingales, continuous
positive semimartingales and continuous R™-valued semimartingales respectively.
Let X,Y €S5,t>0,A={0=1ty <t1 <...,t, =t} a partition of the interval
[0,t] and set AjX = X, — Xy, ,, A;Y =Y, — Yy, and |A|) = maz;(t; —tj_1).

QAX)=3(A;X)2. . . . 19.b,L10.a, L11.b.
QaX,Y)=3Y A;XA;Y . L10a.
(X, . .. ... . . . . covariation process of X, ¥ (1.10.a, 1.11.b).

(X,Y); = lima o Qa(X,Y) (limit in probability).

Xy=(XxX,X). . ... . . quadratic variation process of X (1.9.b).

UX o o e e e e e (additive) compensator of X (I.11.a).

Ux . . . . ... ... multiplicative compensator of X € & (IIL.3.f).
H? . . .. .. ... . . spaceof continuous, L2-bounded martingales M

with norm || Mgz = sup;>q || M| L2(p) (1.9.2).
H:={MecH? | My=0}.

Multinormal distribution and Brownian motion.

/2 . . . DBrownian motion starting at zero.

FYoooo . Augmented filtration generated by W (I1.2.f).

Nm,C) . . . . .. ... .. . Normal distribution with mean m € R¥ and
covariance matrix C (II.1.a).

Ndy=PX<d)........ X a standard normal variable in R'.

ng(x) = (2m) % 2exp(—||z||?/2) . . Standard normal density in R* (IL.1.a).
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Stochastic mtegrals, spaces of integrands. HeX denotes the integral process
(HeX): = fo H,-dX, and is defined for X € S™ and H € L(X). L(X) is the space
of X-integrable processes H. If X is a continuous local martingale, L(X) = L} (X)
and in this case we have the subspaces L*(X) C A%(X) C L} (X) = L(X). The

integral processes He X and associated spaces of integrands H are introduced step
by step for increasingly more general integrators X:

Scalar valued integrators. Let M be a continuous local martingale. Then

M - - .. Doleans measure on (II, B x F) associated with M (III.2.a)
pm(A) = Ep [[5° 1a(s,w)d(M),(w)], A € B x F.
L2(M). . . . space L*(I1, Py, uar) of all progressively measurable processes H

satisfying || H|3 5y = Bp [ [~ HZd(M),] < oo.
For H € L*(M), HeM is the unique martingale in H2 satisfying (HeM,N) =
He(M,N), for all continuous local martingales N (II.2.a.2). The spaces A2(M)
and L(M) = L? (M) of M-integrable processes H are then defined as follows:

A2MYy . L. space of all progressively measurable processes H satisfying
Loy H € L*(M), for all 0 < t < oo.
L(M)=1L% (M) . . space of all progressively measurable processes H satisfying

1po,,.}H € L*(M), for some sequence (T,) of optional times
increasing to infinity, equivalently f; H2d(M), < oo, P-as.,
for all 0 < t < oo (1I1.2.b).
If H € L*(M), then HeM is a martingale in H2. If H € A2(M), then HeM is a
square integrable martingale (1I1.2.c.3).

Let now A be a continuous process with paths which are almost surely of bounded
variation on finite intervals. For w € , dA,(w) denotes the (signed) Lebesgue-
Stieltjes measure on finite subintervals of [0, +0o) corresponding to the bounded
variation function s — A,(w) and |dA;|(w) the associated total variation measure.

LA . .. .. the space of all progressively measurable processes H such that
I [Hs(w)| |dAs|(w) < o0, for P-ae. w € Q.
L},.(A) . . . . the space of all progressively measurable processes H such that

ljogH € L}(A), for all 0 < ¢ < o0.

For H E Lloc(A) the integral process I; = (HeA), = fo H,dA, is defined pathwise
as Ii(w fo Hy(w)dAs(w), for P-ae. w € Q.

Assume now that X is a continuous semimartingale with semimartingale decom-
position X = A+ M (A = ux, M a continuous local martingale, 1.11.a). Then
L(X) =L}, ,(A)N L, .(M). Thus L(X) = L2 _(X), if X is a local martingale.

For H € L(X)set HeX = He A+ HeM. Then HeX is the unique continuous semi-
martingale satisfying (HeX)o = 0, ugex = Heux and (HeX,Y) = He(X,Y),
for all Y € § (Il1.4.a.2). In particular (HeX) = (HeX,HeX) = H?+(X). In
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other words (HeX); = fot H2d(X),. If the integrand H is continuous we have the
representation

fy HydX, = limy a0 Sa(H, X)

(limit in probability), where Sa(H,X) = Yo Hi (Xy; — Xy,_,) for A as above
(IIL.2.e.0). The (deterministic) process t defined by t(t) = ¢, t > 0, is a continuous
semimartingale, in fact a bounded variation process. Thus the spaces L(t) and
L},.(t) are defined and in fact L(t) = L. (t).

loc

Vector valued integrators. Let X € 8¢ and write X = (X', X2,..., X% (column
vector), with X7 € S. Then L(X) is the space of all R%-valued processes H —
(H',H?,... H%) such that H7 € L(X7), for all j = 1,2,...,d. For H € L(X),

HeX =3, HieXI, (HeX),= [jH, dX, =Y, [ HidX],
dX = (dX',dX?,...,dX?%, H,-dX,= Zj HidXj.
If X is a continuous local martingale (all the X7 continuous local martingales), the

spaces L?(X), A%(X) are defined analogously. If H € A%(X), then He X is a square
integrable martingale; if H € L*(X), then HeX € H? (II1.2.c.3, IIL.2.£.3).

In particular, if W is an R%valued Brownian motion, then

L2wy. ... ... space of all progressively measurable processes H such that
”H”%z(w) =Fp fooo ”HSI|2dS < Q.

A2(W) . . . . . . spaceofall progressively measurable processes H such that
Ly H € L3(W), for all 0 < ¢ < oo.

L(W)=L% (W) . . space of all progressively measurable processes H such that

fot | Hs||*ds < oo, P-as., for all 0 < ¢ < oo.

If H € L*(W), then HeW is a martingale in H2 with ||H e W ||g2 = IH | z2ewy. If
H € A*(W), then HeW is a square integrable martingale (II1.2.£.3, II1.2.£.5).

Stochastic differentials. If X € ", Z € S write dZ = H -dX if H € L(X) and
Z = Zy+HeX, thatis, Z, = Zo+ [} H,-dX,, forall t > 0. Thus d(H+X) = H-dX.
We have dZ = dX if and only if Z— X is constant (in time). Likewise KdZ = HdX
if and only if K € L(Z), H € L(X) and KeZ = HeX (IIL3.b). With the process
t as above we have dt(t) = dt.

Local martingale exponential. Let M be a continuous, real valued local martingale.
Then the local martingale exponential £(M) is the process

Xi = &E(M) = exp(M; — %(M)t)

X = &E(M) is the unique solution to the exponential equation dX; = X,dM,,
Xo = 1. If v € L(M), then all solutions X to the equation dX; = Y¥: X:dM; are
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given by X; = Xo&(ve M). If W is an R%valued Brownian motion and y € L(W),
then all solutions to the equation dX; = v: X - dW, are given by

X; = Xo&(voW) = Xoezp(—1 [F |1s|2ds + [y vs - dW,) (IIL4D).

Finance. Let B be a market (IV.3.b), Z € S and A€ S,.

ZtA =Zi/A; . . . Z expressed in A-numeraire units.

Bt,T) . . ... Price at time t of the zero coupon bond maturing at time 7'.
Bo(t) . . . . . . Riskless bond.

Py . . ... . . A-numeraire measure (IV.3.d).

Pr . . .. .. . Forward martingale measure at date T' (IV.3.f).

wl . . . . . . . Process which is a Brownian motion with respect to Pr.
L(t,T;) . . . . . Forward Libor set at time T} for the accrual interval {T;, Tj41].

L@t . . . . ... Process (L(t, Tp), - - -, L(t,Tn—1)) of forward Libor rates.
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Chapter I: Martingale Theory 1

CHAPTER |

Martingale Theory

Preliminaries. Let (2, F, P) be a probability space, B = [~00,+00] denote the
extended real line and B(R) and B(R™) the Borel o-fields on R and R" respectively.

A random object on (2, F, P) is a measurable map X : (Q, F, P) — (,F1)
with values in some measurable space (1, F;). Px denotes the distribution of X
(appendix B.5). If Q is any probability on (Q;, F;) we write X ~ Q to indicate that
Px = Q. If (1, F1) = (R™, B(R")) respectively (1, F1) = (R,B(R)), X is called
a random vector respectively random variable. In particular random variables are
extended real valued.

For extended real numbers a, b we write aAb = min{a, b} and aVb = maz{a, b}.
If X is a random variable, the set {w € Q| X > 0} will be written as [X > 0] and its
probability denoted P([X > 0]) or, more simply, P(X > 0). We set Xt = X V 0 =
x>0 X and X~ = (-X)*. Thus X+, X~ >0, X" X~ =0and X = Xt -

For nonnegative X let E(X) = fQ XdP and let £(P) denote the family of all
random variables X such that at least one of E(X*), E(X ™) is finite. For X € £(P)
set E(X) = E(X*) — E(X™) (expected value of X). This quantity will also be
denoted Ep(X) if dependence on the probability measure P is to be made explicit.

If X € £&(P) and A € F then 14X € £(P) and we write E(X; A) = E(14X).
The expression “P-almost surely” will be abbreviated “P-as.”. Since random vari-
ables X, Y are extended real valued, the sum X + Y is not defined in general.
However it is defined (P-as.) if both E(X*) and E(Y1) are finite, since then
X,Y < 400, P-as., or both E(X~) and E(Y ™) are finite, since then X,Y > —oo0,
P-as.

An event is a set A € F, that is, a measurable subset of 2. If (4,) is a sequence
of events let [A,i.0] =, Upsm An = {w € Q| w € A, for infinitely many n }.

Borel Cantelli Lemma. (a) If ", P(A,) < co then P(A,i.0.) = 0.
(b) If the events A,, are independent and 3., P(A,) = oo then P(A,i.0.) = 1.
(c) If P(An) >4, for alln > 1, then P(Ani.0.) > 4.

Proof. (a) Let m > 1. Then 0 < P(Ani.0.) <> .. P(A,) — 0, as m T oo.
(b) Set A = [An4.0.]. Then P(A°) = lim,, P(ﬂn;m Ag) = limy, Hn>m P(AS) =
limpm [[ 5., (1 = P(An)) = 0. (c) Since P(Api.o0.) = limp, P(UJ

11>m -1



