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Le hasard est la réserve de Dieu. Le Tout-Puissant ne fait donner sa réserve
qu’en des circonstances graves, surtout depuis qu'il a vu les hommes assez sagasez
pur étudier et prévoir les chances d’aprés la nature et les élements réquliérement
organises. . . .

Or, Dieu aime ou doit aimer a déjouer les combinaisons de ces
orguielleux . . . avec les éléments qui leur sont incommes, ou dont ils ne peuvent
prevoir lintervention.

Cette théorie, comme on le voit, renferme de spécieux arguments, et fournir de
brilliantes theéses. . . .

ALEXANDRE DUMAS, Les Quarante-Cing

(Chance is what God keeps in reserve. The Almighty resorts to it only in
important circumstances, particularly now that the sagacity of human beings is
such that they are able to see into the future while observing nature and
comprehending its laws.. . .

Yet God likes to disrupt the designs of the arrogant and does so by means
of the unknown. the intrusion of which humans do not perceive.

This theory, if buttressed by cogent arguments, might serve as the basis of
brilhant philosophical theses. .. .)



PREFACE

In recent decades the physical community and scientists in related fields have
shown an increasing interest in the structure and properties of disordered
condensed systems. The reasons for this are twofold: the advances cf solid-state
physics and its numerous applications, and the fact that disordered systems
(crystals with impurities, liquid metals, amorphous subst:hces, and the like)
are, in a way, systems of a generic nature, while ordered sgructures such as the
perfect crystal lattice are, strictly speaking, idealized objects. But the existing
theory of ordered condensed systems depends to a great extent on the notion
of the ideal structure of such systems and therefore cannot be applied to
disordered systems without substantial modifications. Indeed, we know how
important the notion of translational symmetry is to the electron theory of
metals or the dynamical theory cf the crystal lattice. It enables us to describe
the low-lying levels of a macroscopic system in terms of various quasi-particles
characterized by quasi-momentum and a dispersion law. The corresponding
classification of states has a simple and universal structure and produces a
transparent statistical description of elementary excitations and the mecha-
nism of the kinetic phenomena associated with these excitations. In particular,
the notions of quasi-particle collisions and the mean free path are introduced
in kinetics with respect to the changes in the particle quasi-momenium, and
the entire terminology is based mainly on these notions.

The energy spectrum of the low-lying states of a disordered condensed
system is more complicated. In the first place there are brarches in the
spectrum that correspond to the single-particle picture, that 38, resemble
quasi-particles. But since no translational symmetry is present, the systematics
of even the single-particle states proves to be more difficult than in the case of
ordered systems, and the spectrum structure is more diversified. For instance,
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besides states whose amplitude has the same order of magnitude over the bulk
of the crystal (similar to the Bloch functions in an ordered system) there are
also localized states. If the system is strongly disordered, the fraction of
localized states is considerable (for example, in one dimension all states are
localized) and greatly influences the kinetic phenomena.

Besides quasi-particles there may be other types of excitations in disordered
systems. For instance, correlation effects prove to be important in a system of
interacting electrons in a random impurity field. Here two states with closely
lying energy levels correspond to two different ways in which the electrons are
distributed over the impurity sites, and the behavior of the density of single-
particle states differs from that in the single-particle picture, namely, there
appears a so-called Coulomb gap (see Shklovskii and Efros, 1979).

Excitations that exist due to local rearrangement of the particles constitut-
ing the frame of a solid may also play an important role. These excitations are
connected with the quantum transitions of the entire system between con-
figurations that differ only in the positions of a. small number of frame
particles. If the cnergies corresponding to these configurations are closé and
the energy barrier separating them is not too high, then the transition time is
small compared with the characteristic observation time, and hence the excita-
tions of this type are in equilibrium. One of the important consequen\&::s of the
existence of the simplest of such excitations, two-level excitations, is the linear
behavior of the low-temperature specific heat of amorphous substances (see
Anderson, et al., 1972).

Today the physics of disordered systems constitutes a wide and highly
diversified part of the pnysics of the condensed state. For this reason the
topics discussed in works devoted to various aspects of the theory of dis-
ordered systems are so diverse and the number of works so great that it is very
difficult to give a coherent exposition cf the ideas and results of these works, at
least in a book of reasonable size. The present monograph makes no attempt
of this kind. It is devoted to the one-body approximation in the theory of
disordered systems.

The point is that, just as in the case of ordered systems, even a one-body
approximation enables us to formulate a number of basic concepts, perceive
many of the characteristic features of disordered systems, and study various
interesting phenomena. The scope of problems studied within the framework
of this approximation is rather extensive and at present constitutes a highly
developed part of the theory. This book, therefore, endeavors to give an
exposition of the general and well established facts of the one-body theory of
disordered systems.

Ve will mainly be analyzing the structure of the energy spectrum and the
quantum states of such systems, that is, our most important task will be to
studv the density of states and the space—time correlation functions, in terms
of which we express the basic thermodynamic and kinetic characteristics
with n the framework of the one-body approximation. However. the choice of
subject matter for the realization of the stated program is obviously subjective.
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This is true also of the literature cited, which in no way can be considered
complete. ,

The widely used versions of the one-body approximation are the motion of
a particle in a random field and of a system of coupled oscillators in an
aperiodic structure. The first is important in describing the behavior of an
excess electron in a solid, while the second is important in explaining the
vibrational spectrum, the spin-wave spectrum, and the exciton spectrum in
condensed media. The reader must bear in mind, however, that the results
obtained via such models are much less universal than in the ordered case. In a
periodic structure the translational a..d point symmetries alone provide con-
siderable model-independent information about the systematics of quantum
states and the quasi-particle spectrum, while in disordered systems there are
many more possibilities. But certainly these models are of considerable gener-
ality, and many of the laws which they obey are of a fundamenta! nature. For
instance, in the regions of the spectrum that are neighborhoods of the
spectrum singularities (genuine spectrum boundaries, one-impurity levels, or
the boundaries of a “bare” spectrum when the system is only slightly dis-
ordered), the quantum states allow a simple and transparent systematics (see
Lifshits, 1964), which considerably narrows the possibilities mentioned above.
Much of the present monograph is devoted to studies of these regions.

In Chapter 1 we give brieﬂj* the description of the one-body models most
widely used in the book and, ih general, in the theory of disordered systems.
We also discuss the general properties inherent in such systems: the spatial
homogeneity on the average and the disappearance of statistical correlations
between the disorder parameters at points far apart. One of the most im-
portant consequences of these properties is the fact that specific extensive
quantities (such as the density 'of states and the conductivity) are self-aver-
aged, that is, such quantities in a macroscopically large system are always
nonrandom. The abovementioned properties also explain a number of gencrai
properties of the spectrum, such as the nonrandomness of the boundaries, the
fact that the discrete spectrum is dense, and the criteria for the localization
and delocalization of states. Moreover, in this chapter we present the widely
accepted qualitative picture of the spectrum structure and the behavior of
various correlation functions in disordered systems. This picture employs,
among other things, quasi-classical reasoning and the ideas used in percolation
theory.

Chapters 2 and 3 are devoted to one-dimensional problems. In the theory of
disordered systems, just as in other fields of theoretical physics, one is able to
move quite far ahead in studying one-dimensional models. The fact that here
the space is assumed to be one-dimensional enables one to write closed
dynamical equations (that is, equations valid in each realization) for quantities
that determine the properties of the system under investigation. The structure
of these equations is always such that they can be used as a basis for deriving
other, nonrandom equations (of the Fokker—Planck and Smoluchowski types)
for the probability densities of the corresponding quantities. In some cases one
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is able to solve these equations in closed form; when this is not possible, a
study of the dynamics of the system (that is, the properties of individual
random equations) for characteristic regions of the spectrum makes it possible
to predict the structure of the solutions of the respective nonrandom equations
and, starting from this, to develop an approximate method for finding these
solutions.

In Chapter 2 we use this approach to study the density of states for many
one-dimensional systems, and most of the results are exact.

More complex characteristics (than the density of states) of one-dimen-
sional disordered systems are considered in Chapter 3. The main consequence
of the absence of translational invariance in disordered systems is the presence
of a macroscopically large number of localized states in such systems. This
feature, which constitutes the main difference between disordered and ordered
systems, leads to a radical change in the kinetic properties. Such effects
manifest themselves most strongly in one-dimensional systems, where even a
weak random potential leads to localization of all the states of the system; as a
result the diffusion coefficient and the dc conductivity vanish (we are speaking,
of course, of the one-body approximation). In this respect one-dimensional
systems are essentially disordered; therefore, the methods of solid-state physics
usually prove to be invalid for studying such systems.

However, by employing the method of Fokker-Planck equations, which
exploits the intrinsic features of one-dimensional topology and is developed in
Chapter 2, we are able to study in detail the structure of states of one-dimen-
sional systems (the localization range of wave functions, the nature of the
spectrum, etc.) and their kinetic properties (the density—density correlation
function and conductivity). More complete results are obtained in the quasi-
classical energy range, where in analyzing the equations one can use a variant
of the method of averaging over the “fast” variable.

“ In Chapter 4 we consider the behavior of the density of states and the wave
functions in multidimensional disordered systems near the special boundaries
of the spectrum (we call these fluctuation boundaries). In the neighborhood of
these boundaries the spectrum exists only because there are low-probability
fluctuations of the random parameters of the system, due to which the density
of the states in this neighborhood is, as a rule, exponentially small. The
calculation of the leading term of the exponent constitutes the main part of
this chapter. Note that for many disordered systems the fluctuation region of
the spectrum is not exhausted by the neighborhood of the boundary in the
restricted sense. Generally speaking, the fluctuation region can be divided into
several segments, in each of which, when calculating the density of states and
the wave functions, we can replace the initial random potential with an
effective potential in such a manner that each segment is included in the
genuine fluctuation boundary of the appropriate effective potential. The pres-
ence of additional small parameters in the problem often makes these regions
rather broad.
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In contrast to fluctuation regions, an effective analysis of the spectral region
of a disordered system where the density of states is essentially nonzero (for
one, the region that lies in the spectrum of the initial translationally invariant
part of the total Hamiltonian) is possible only when there are some small
parameters characterizing the disorder of the system. The impurity concentra-
tion is one such parameter. The smallness of this parameter is taken into
account by expanding the various averaged values in powers of the concentra-
tion, and this does not assume that the impurity potential is small. The
applicability of this method is broadened considerably when we go over to its
modifications, which are described and used in Chapters 5 and 6.

Chapter 5 provides a description of the general structure of concentration
expansions and gives examples of simple applications. It also discusses various
ways of constructing modified self-consistent forms of the expansions. These
lead to expressions that contain, in addition to the characteristics of the
translationally invariant part of the Hamiltonian, only the first power in
concentration and are, in essence, analogous to the Hartree-Fock approxima-
tion in many-body theory. These expressions prove to be useful in studies
dealing with the extended states that lie quite far from the boundaries. Here
such expansions retain their meaning at concentrations that are not too low,
take on the character of interpolations, and illustrate the qualitative aspects in
the changes in the system properties. In addition, in this chapter we give a
description of models for which the above-noted approximations prove to be
asymptotically exact in a certain sense.

In Chapter 6 we discuss the impurity band that appears due to the
broadening of a local impurity level. The structure of the quantum states and
the behavior of the density of states in this region can be diverse, depending
on the impurity concentration and the separation between the initial-spectrum
boundary and the local level. At a low impurity concentration the energy
levels and the states in the impurity band allow for a simple and graphic
systematics. The wave functions usually prove to be localized at one or two
impurities, although the corresponding energy levels depend on the position of
other impurity centers. The density of states and spatial correlation functions
calculated within the framework of this systematics are, in the leading terms in
the cancentration, of a universal nature (that is, are represented within a
certain scale by functions that are concentration-independent). States localized
at a greater number of impurity centers result from considerably less probable
configurations, and their relative contributions to the density of states and
correlation functions depend on the concentration.

Finally, in Chapter 7 we consider the problem of calculating the average
transmission coefficient for a flux of particles passing through layers of a
randomly nonuniform medium. The intricacy of the problem lies in the fact
that since the transmission coefficient is seldom a self-averaged quantity, its
physical meaning is far from obvious and special conditions are required for
the average value to be realized. The chapter starts with a discussion of these
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questions. Then we estabiish the exponential decrease of the average transmis-
sion coefficient as the thickness of the layer grows, find the probability
distribution for the transmission coefficient, calculate the corresponding decre-
ment in the over-the-barrier quasi-classical region, and discuss the connection
of the transmission coefficient with the static kinetic characteristics (electrical
and thermal conductivities) of disordered one-dimensional finite systems. Next
we deal with sub-barrier transmission for a layer with impregnated point
impurities. We show that there are two energy regions in which the transmis-
sion is essentially different: in one it is resonant, in the other nonresonant. In
the.more interesting resonant case the mean transmission coefficient is formed
at the low-probability impurity configurations, which correspond to an almost
ideal transparency of the layer.

This book (the Russian edition) was conceived in the mid 1970s and
completed in 1980. For this reason it do<s not include recent important results
obtained in the scaling-localization theory and weak-localization theory. One
can get acquainted with the new branches of the theory of disordered systems
‘nitiated by these results through the reviews of Altshuler, et al., (1983), and
Jadovskil (1981) as well as through the Proceedings of the 16th International
“onference on Low Temperature Physics LT-16 [Physica B + C, 107, 108
1981)].

1. M. LIFSHITS
S.A. GREDESKUL
L. A.PasTU

Work on the manuscript for the English translation of the book was nearing
s end when our teacher and coauthor, II'ya Lifshits, suddenly died. It is
mpossible to overstate the influence of this remarkable scientist on the physics
f condensed matter and, in particular, on the theory of disordered systems,
ne of whose creators was II'ya Lifshits. (His first works in this field appeared
.t the end of the 1930s, and his last papers were published after his death.)
The scope of his interests and profoundness of his ideas can be appreciated
from his publications. But all who had the pleasure of participating in
scientific discussions and personal conversations with II'ya Lifshits felt the
drive of his ideas to a much greater extent. His animation and passion for
science, his gentleness and readiness to help, complemented by an uncom-
sromising attitude toward his work, all merged to make a charming and
ntstanding person who will always be remembered by his friends and
:olleagues.

S.G.and L. P.

Decomber |98
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1 GENERAL PROPERTIES OF
DISORDERED SYSTEMS

We will start our discussion of the general ideas of the theory by describing an
object which in the modern theory of condensed matter is commonly known
as a disordered system. When considering such a system, we must first of all
bear in mind that there is a relatively rigid “frame” (e.g., the equilibrium
positions of the heavy particles in the solid) that serves as a background for
the faster degrees of freedom (conduction electrons, excitonic and spin excita-
tions, or atomic vibrations). The frame may be not absolutely rigid, but its
rearrangement time must be large compared to the characteristic time of a fast
process (the “instantaneous frame” in a liquid may also satisfy this require-
ment). The disorder of a system in the sense commonly used in the theory of
condensed matter is related to the aperiodic random structure of this frame. In
a solid the disorder at low temperatures is the result of the nonequilibrium
nature of such a structure, but its time of existence is usually very large.

Two problems prove to be effective models of excitations in a wide range of
cases: the problem of the quantum-mechanical motion of a particle in a
random potential field (which has its own interest), and the problem of
classical wave propagation in a random medium. It is these models that will Le
the main objects of our study.

All disordered systems possess a number of general properties in common.
The most important such property is the spatial homogeneity in the mean and
the absence of any correlation between the random parameters that char-
acterize the disorder (e.g., the random potential in the Schrodinger equation)
at points that are far apart. One of the more important consequences is the
self-averaging of the extensive physical quantities, which means that when
these quantities, which are random in a finite system, are divided by the



