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DETERMINING DESIGN FORCE LEVELS FOR EARTHQUAKE-
RESISTANT REINFORCED CONCRETE STRUCTURAL WALLS

by

III
A.T. DerechoI, M. IqbalII, and W. G. Corley

SUMMARY

A procedure for determining design forces for earthquake-resistant
reinforced concrete structural walls is presented. Following an exten-
sive parametric study to identify significant variables, a comprehensive
series of dynamic inelastic analyses was made. Response data obtained
from some 300 analyses served as basis for the procedure developed. The
procedure applies specifically to isolated structural walls.

In determining design force levels, attention was focused on the cri-
tical hinging region near the base o6f the wall. Results of the analyses
are correlated with data from tests on large-size wall specimens subjec-
ted to slowly reversing loads. The procedure developed differs from
currently used or proposed methods in providing an explicit relationship
between ductility, yield level, and corresponding design forces.

INTRODUCTION

Current code-specified forces for design of earthquake-resistant
structures imply certain relationships between expected earthquake demand
and structural capacity. Correlation of force and deformation demands
and available capacities of different structures upon which these design
forces are based, however, has not been fully established or adequately
documented. The major difficulty is the lack of adequate information on
earthquake demand. Also, more data are needed on structural capacity of
particular structures. There is clearly a need to better define the
variation of the significant "load" (earthquake demand) and "resistance"
(structural capacity) quantities with the major variables for different
types of structures and structural systems.

Investigation of reinforced concrete structural walls gained impetus
from the observation that the dual requirements of life safety and damage
control in multistory buildings can most efficiently be met by the use
of structural walls. This observation has been repeatedly verified
during recent earthquakes.

Work leading to the design procedure discussed in this paper was
done to lay a firmer basis for the earthquake.demand-versus-structural
capacity relationship. Results for the particular case of isolated
structural walls are presented here. Subsequent phases of the project
consider wall systems, i.e., coupled walls and frame-wall systems.

OBJECTIVE

The major objective of the investigation is to determine force and
deformation demands in critical regions of isolated structural walls sub-

I)Manager, and II)former Senior Structural Engineer, Structural Analy-
tical section, Engineering Development Division, III)Divisional Direc-
tor, Engineering Development Division, Construction Technology Labora-
tqries, Portland Cement Association, Skokie, Illinois, U.S.A.
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jected to earthquake motions. A wide range of values of the significant
structural and ground motion parameters is considered. Because the mag-
nitude of inelastic deformation in critical regions of walls is a major
design consideration, analysis must consider the inelastic phases of
response.

GENERAL APPROACH
Parametric Study

As an initial step in developing the design procedure, an extensive
parametric study was conducted to identify the most significant struc-
tural and ground motion parameters (1). Among the variables considered
were: fundamental period, yield level in flexure, yield stiffness ratio,
unloading and reloading stiffnesses characterizing the "decreasing-
stiffness" hysteretic loop, damping, taper of stiffness and strength
along height of structure, and base fixity condition. 1In addition to
these structural parameters, effects of ground motion intensity,
duration, and frequency content on dynamic inelastic response were also
investigated.

Results of the parametric study indicate that among the structural
variables considered, the most important are initial fundamental period
and flexural yield level. Among the parameters characterizing ground
motion, intensity is the most significant. However, frequency content
can also have an appreciable effect on response. Ground motion duration
primarily affects the cumulative plastic hinge rotation, by influencing
the number of cycles of response.

Compilation of Response Data

Once the principal variables had been identified through parametric
studies, comprehensive dynamic response data were compiled. A wide range
of values of the principal variables was considered. The purpose of this
compilation was to establish the variation of selected response quanti-
ties with the major structural and ground motion parameters. ‘A correla-
tion with laboratory results could then follow.

Computer Program

Dynamic analyses were carried out using the computer program DRAIN-2D
(2), developed at the University of California, Berkeley. The program is
a general purpose code for dynamic analysis of plane inelastic struc-
tures. A number of modifications have been introduced into the program
by Construction Technology Laboratories/PCA staff.

Analytical Model

An elevation of the basic 20-story isolated wall structure considered
in the parametric study and in much of the subsequent series of analyses
is shown in Fig. la. Preliminary studies indicated that it is permissi-
ble to use a lumped-mass model with 12 masses for the dynamic analysis.
(1). This reduced model is shown in Fig. 1b. Note that the nodes, as
well as the lumped masses, in the lower critical region of the wall are
spaced closer together than those above. This was done to obtain a more
detailed estimate of deformation in this critical region. Similar
reduced models were used for 10-, 30- and 40-story structures.
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The primary moment-rotation relationship assumed for the hinging
region is bilinear. The hysteretic loop, shown in Fig. 2, is defined by
rules essentially following those proposed by Takeda (3). The loop is
character ized by decreasing slopes of the“reloading and unloading
branches in cycles subsequent to yield.

Input Motions

A total of five different recorded accelerograms and one artificially
generated motion was used in the analyse Input motions are characte-
rized by three major parameters, namely, intensity, duration, and
frequency content. The intensities of input motions were normalized in
terms of "spectrum intensity" (SI). As used here, spectrum intensity is
defined as the area under the 5%-damped relative velocity response
spectrum corresponding to 10 seconds of ground motion, between periods
0.1 sec. and 3.0 sec. The spectrum intensity for the N-S component of
the 1940 El Centro record was used as the reference spectrum intensity,
SIreg,. Intensity values equal to 0.75, 1.0, and 1.5 times SI ¢,
were considered.

After examination of available reco}ﬂed motions and the literature
on the subject of earthquake duration, a 20-§econd duration of strong
ground motion was selected to provide a basis for design. In this study,
an approximate method of classifying accelerograms with respect to fre-
quency content based on the shape of the associated 5%-damped velocity
spectrum is proposed. Results of the parametric study (1) indicate that
the method provides a good basis for selecting input motions for
near-maximum response. ~

DETERMINATION OF DESIGN FORCE LEVELS

Once the major variables affecting inelastic dynamic response had
been identified through parametric studies (1), an extensive series of
analyses was carried out. Over 300 such analyses were performed, The
aim here was to compile response data corresponding to a wide range of
values of the major variables. Response quantities of interest include
maximum top displacement, interstory displacement, maximum shear, maximum



bending moment, and rotational ductility in the critical hinging region
near the base of the wall.

Maximum Response Values

To compile data on maximum response values, six different accelero-
grams were selected. Main structural variables considered are initial
fundamental period, T;, and flexural yield level, My. The fundamental
period was assigned values ranging from 0.5 sec. to 3.0 sec. Yield
level values from 150,000 in.-kips (16,950 kNem) to 3,000,000 in.-kips
(339,000 kN.m) were considered. In addition to the 20-story wall
considered in the parametric studies 10-, 30- and 40-story structures
were analyzed.

Results of the dynamic analyses have been assembled in the form of
plots giving maximum response gquantities as functions of the fundamental
period Ty, and yield level, . Selected plots of maximum top displace-
ment, shear, and rotational ductility demand, for the case of 20-story
structural walls with My = 750,000 in.-kips (84,750 kN.m), are shown
in Fig. 3.

Critical Response Values

From plots of maximum response values due to different input motions,
such as shown in Fig. 3, a second set of figures was prepared. This
second set shows only the largest response values due to any of the
different input motions used in Fig. 3. These will be referred to as
"critical" response values. Examples of critical response plots for
20-story isolated walls are shown in Fig. 4. A curve for a specific
yield level in Fig. 4 is defined by points representing the largest
values of the parameters in the maximum response plots. Thus, a maximum
response plot, such as Fig. 3a, showing maximum response due to several
input motions and corresponding to a particular yield level, M,, provides
one curve in the corresponding critical response plot of Fig.

Figure 4b indicates that rotational ductility demand decreases with
increasing strength or yield level and increasing fundamental period.
On the other hand, Fig. 4c indicates that as yield level increases,
maximum shear also tends to increase. Thus, an increase in strength or
yield level has two counteracting effects, one tending to diminish
ductility demand and the other tending to increase maximum shear in the
hinging region. Experiments (4, 5) have shown that high shears can
limit the rotational capacity (or ductility) fo the hinging region in
walls subjected to reversed loading.

DESIGN PROCEDURE

The piocedure for determining design force levels for isolated struc-
tural walls is based on critical response plots such as shown in Fig. 4.
Figures 5 and 6 show design charts developed for walls of 10 to 40
stories subjected to an earthquake intensity equal to 1.5 SI of_ . The
method used in obtaining Figs. 5 and 6 from critical response plots is
relatively straightforward and is described in detail in Ref. 6.

Basic design steps using Figs. 5 and 6 are as follows:
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1. Starting with a preliminary design satisfying gravity and wind
loading requirements, assume an available rotational ductility,
U~ . An estimate may be obtained by using a chart based on ex-
per imental data (4, 5) similar to the plot shown in Fig. 8. The
estimate is obtained by entering the chart with an assumed value
of the design nominal shear stress.

2, Determine flexural design factor, ag, from a chart such as is
shown in Fig. 5. The total lateral force for flexural design,
Vp = wa (W being the effective weight of the wall) is then
distributed over the height of the wall according to UBC-76 (7),
as shown in Fig. 7. Flexuri% reinforcement required to provide
the minimum yield level, , at the critical section negﬁ the
base of the wall can then Ke calculated. Provision of M at
the critical section is intended to ensure that the avaiXable
rotational ductility assumed in Step 1 is not exceeded under the
design earthquake intensity.

3. Determine the shear design factor, Ev. from a chart such as
shown in Fig. 6. Using ®,, and a reduction factor, r,*, calcu-
late effective static shear Vg = ryayVp = ryGyoaeW.

4. Check if the available ductility, ug, assumed in Step 1 can be
developed under the design shear stress corresponding to the
shear determined in Step 3 above. This check can be done using
a chart, such as shown in Fig. 8, based on experimental data.

If the assumed ductility can be developed, then determine
the required shear reinforcement. This will be based on design
recommendations from results of the experimental program (4, 5).

5. If the assumed ductility cannot be developed under the calcula-
ted design shear stress, adjust the assumed ductility value
accordingly and repeat Steps 1 through 4 until reasonable agree-
ment between assumed and available ductilities is obtained.

These design steps are for the critical region at the base of an
isolated structural wall. Specifically considered are the forces neces-
sary to determine flexural and shear ceinforcement. Assumed as known or
specified are the funadamental period of the structure and the design
earthquaikke intensity.

A major distinction between the prcposed procedure and current
simplified design procedures is the explicit relationship established
between the principal structural parameters and force and deformation
requirements. Also important is the manner in which these have been
correlated with experimental data to obtain design forces. A design
procedure for frame-wall systems can be developed along similar lines,
with appropriate modifications to reflect the effect of other structural
parameters characterizing the more complex systems. This is the subject
of a current program of investigaticn.

*This reduction factor is applied to the calculated critical dynamic
shears to account for the effect of a number of factors and allow a di-
rect compar ison with shear strengti: values obtained experimentally
under slowly reversed loading.
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SUMMARY

A procedure for determining design force levels for earthquake-
resistant isolated structural walls is described. The method is based
on 2 correlation of analytically-derived earthquake demands and capacity
values obtained from the concurrent experimental program. The procedure
developed differs from current code procedures in providing an explicit
relationship between the principal structural and ground motion parame-
ters and the corresponding force and deformation demands.
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