ADVANCES IN CHEMICAL PHYSICS VOLUME 119 PART III

I. PRIGOGINE and STUART A. RICE, Series Editors

Edited by MYRON EVANS

MODERN NONLINEAR OPTICS Part III

MODERN NONLINEAR OPTICS

Part 3

Second Edition

ADVANCES IN CHEMICAL PHYSICS VOLUME 119

Edited by

Myron W. Evans

Series Editors

I. PRIGOGINE

Center for Studies in Statistical Mechanics and Complex Systems
The University of Texas
Austin, Texas
and
International Solvay Institutes
Université Libre de Bruxelles
Brussels, Belgium

and

STUART A. RICE

Department of Chemistry and The James Franck Institute The University of Chicago Chicago, Illinois

This book is printed on acid-free paper. ⊗

Copyright © 2001 by John Wiley & Sons, Inc., New York. All rights reserved.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4744. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-6008, E-Mail: PERMREQ@WILEY.COM.

For ordering and customer service, call 1-800-CALL-WILEY

Library of Congress Catalog Number: 58-9935

ISBN 0-471-38932-3

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

MODERN NONLINEAR OPTICS Part 3 Second Edition

ADVANCES IN CHEMICAL PHYSICS

VOLUME 119

EDITORIAL BOARD

- Bruce, J. Berne, Department of Chemistry, Columbia University, New York, New York, U.S.A.
- Kurt Binder, Institut für Physik, Johannes Gutenberg-Universität Mainz, Mainz, Germany
- A. Welford Castleman, Jr., Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, U.S.A.
- DAVID CHANDLER, Department of Chemistry, University of California, Berkeley, California, U.S.A.
- M. S. Child, Department of Theoretical Chemistry, University of Oxford, Oxford, U.K.
- WILLIAM T. COFFEY, Department of Microelectronics and Electrical Engineering, Trinity College, University of Dublin, Dublin, Ireland
- F. Fleming Crim, Department of Chemistry, University of Wisconsin, Madison, Wisconsin, U.S.A.
- ERNEST R. DAVIDSON, Department of Chemistry, Indiana University, Bloomington, Indiana, U.S.A.
- Graham R. Fleming, Department of Chemistry, University of California, Berkeley, California, U.S.A.
- Karl F. Freed, The James Franck Institute, The University of Chicago, Chicago, Illinois, U.S.A.
- PIERRE GASPARD, Center for Nonlinear Phenomena and Complex Systems, Brussels, Belgium
- ERIC J. HELLER, Institute for Theoretical Atomic and Molecular Physics, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, U.S.A.
- ROBIN M. HOCHSTRASSER, Department of Chemistry, The University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A.
- R. Kosloff, The Fritz Haber Research Center for Molecular Dynamics and Department of Physical Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
- RUDOLPH A. MARCUS, Department of Chemistry, California Institute of Technology, Pasadena, California, U.S.A.
- G. NICOLIS, Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, Brussels, Belgium
- THOMAS P. RUSSELL, Department of Polymer Science, University of Massachusetts, Amherst, Massachusetts
- Donald G. Truhlar, Department of Chemistry, University of Minnesota, Minnesota, U.S.A.
- JOHN D. WEEKS, Institute for Physical Science and Technology and Department of Chemistry, University of Maryland, College Park, Maryland, U.S.A.
- Peter G. Wolynes, Department of Chemistry, University of California, San Diego, California, U.S.A.

CONTRIBUTORS TO VOLUME 119 Part 3

- Nils Abramson, Industrial Metrology and Optics, Department of Production Engineering, Royal Institute of Technology, Stockholm, Sweden
- Petar K. Anastasovski, Department of Physics, Faculty of Technology and Metallurgy, Saints Cyril and Methodius University, Skopje, Republic of Macedonia
- TERENCE W. BARRETT, BSEI, Vienna, VA
- FABIO CARDONE, Departimento di Fisica, Univeritá de L'Aquila, Italy
- Lawrence B. Crowell, The Alpha Foundation, Institute of Physics, Rio Rancho, NM
- M. W. Evans, 50 Rhyddwen Road, Craigcefnparc, Swansea, Wales, United Kingdom
- HAROLD L. Fox, Editor, *Journal of New Energy*, and President, Emerging Energy Marketing Firm, Inc., Salt Lake City, UT
- DAVID B. HAMILTON, U.S. Department of Energy, Washington, DC
- S. Jeffers, Department of Physics and Astronomy, York University, Toronto, Ontario, Canada
- I. A. Khovanov, Department of Physics, Saratov State University, Saratov, Russia
- D. G. LUCHINSKY, Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom and Russian Research Institute for Metrological Service, Moscow, Russia
- R. Mannella, Dipartimento di Fisica, Universita di Pisa and Istituto Nazionale Fisica della Materia UdR Pisa, Pisa, Italy and Department of Physics, Lancaster University, Lancaster, United Kingdom
- P. V. E. McClintock, Department of Physics, Lancaster University, Lancaster, United Kingdom
- MILAN MESZAROS, The Alpha Foundation, Institute of Physics, Budapest, Hungary

- ROBERTO MIGNANI, Dipartimento di Fisica "E. Amaldi," Universitá degli Studi "Roma Tre," Roma, Italy
- PAL R. MOLNAR, The Alpha Foundation, Institute of Physics, Budapest, Hungary
- HÉCTOR A. MÚNERA, Department of Physics, Universidad Nacional de Colombia, Bogota D.C., Colombia
- Antonio F. Rañada, Departamento de Electricidad y Electronica, Universidad Complutense, Madrid, Spain
- DONALD REED, Chektowage, NY
- D. F. ROSCOE, Department of Applied Mathematics, Sheffield University, Sheffield S3 7RH, United Kingdom
- Sisir Roy, Physics and Applied Mathematics Unit, Indian Statistical Institute, Calcutta, India
- José L. TRUEBA, ESCET, Universidad Rey Juan Carlos, Madrid, Spain

INTRODUCTION

Few of us can any longer keep up with the flood of scientific literature, even in specialized subfields. Any attempt to do more and be broadly educated with respect to a large domain of science has the appearance of tilting at windmills. Yet the synthesis of ideas drawn from different subjects into new, powerful, general concepts is as valuable as ever, and the desire to remain educated persists in all scientists. This series, *Advances in Chemical Physics*, is devoted to helping the reader obtain general information about a wide variety of topics in chemical physics, a field that we interpret very broadly. Our intent is to have experts present comprehensive analyses of subjects of interest and to encourage the expression of individual points of view. We hope that this approach to the presentation of an overview of a subject will both stimulate new research and serve as a personalized learning text for beginners in a field.

I. PRIGOGINE STUART A. RICE

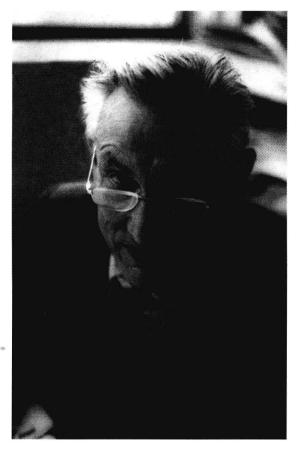
PREFACE

This volume, produced in three parts, is the Second Edition of Volume 85 of the series, *Modern Nonlinear Optics*, edited by M. W. Evans and S. Kielich. Volume 119 is largely a dialogue between two schools of thought, one school concerned with quantum optics and Abelian electrodynamics, the other with the emerging subject of non-Abelian electrodynamics and unified field theory. In one of the review articles in the third part of this volume, the Royal Swedish Academy endorses the complete works of Jean-Pierre Vigier, works that represent a view of quantum mechanics opposite that proposed by the Copenhagen School. The formal structure of quantum mechanics is derived as a linear approximation for a generally covariant field theory of inertia by Sachs, as reviewed in his article. This also opposes the Copenhagen interpretation. Another review provides reproducible and repeatable empirical evidence to show that the Heisenberg uncertainty principle can be violated. Several of the reviews in Part 1 contain developments in conventional, or Abelian, quantum optics, with applications.

In Part 2, the articles are concerned largely with electrodynamical theories distinct from the Maxwell-Heaviside theory, the predominant paradigm at this stage in the development of science. Other review articles develop electrodynamics from a topological basis, and other articles develop conventional or U(1) electrodynamics in the fields of antenna theory and holography. There are also articles on the possibility of extracting electromagnetic energy from Riemannian spacetime, on superluminal effects in electrodynamics, and on unified field theory based on an SU(2) sector for electrodynamics rather than a U(1) sector, which is based on the Maxwell-Heaviside theory. Several effects that cannot be explained by the Maxwell-Heaviside theory are developed using various proposals for a higher-symmetry electrodynamical theory. The volume is therefore typical of the second stage of a paradigm shift, where the prevailing paradigm has been challenged and various new theories are being proposed. In this case the prevailing paradigm is the great Maxwell-Heaviside theory and its quantization. Both schools of thought are represented approximately to the same extent in the three parts of Volume 119.

As usual in the *Advances in Chemical Physics* series, a wide spectrum of opinion is represented so that a consensus will eventually emerge. The prevailing paradigm (Maxwell–Heaviside theory) is ably developed by several groups in the field of quantum optics, antenna theory, holography, and so on, but the paradigm is also challenged in several ways: for example, using general relativity, using O(3) electrodynamics, using superluminal effects, using an

X PREFACE


extended electrodynamics based on a vacuum current, using the fact that longitudinal waves may appear in vacuo on the U(1) level, using a reproducible and repeatable device, known as the *motionless electromagnetic generator*, which extracts electromagnetic energy from Riemannian spacetime, and in several other ways. There is also a review on new energy sources. Unlike Volume 85, Volume 119 is almost exclusively dedicated to electrodynamics, and many thousands of papers are reviewed by both schools of thought. Much of the evidence for challenging the prevailing paradigm is based on empirical data, data that are reproducible and repeatable and cannot be explained by the Maxwell–Heaviside theory. Perhaps the simplest, and therefore the most powerful, challenge to the prevailing paradigm is that it cannot explain interferometric and simple optical effects. A non-Abelian theory with a Yang–Mills structure is proposed in Part 2 to explain these effects. This theory is known as O(3) *electrodynamics* and stems from proposals made in the first edition, Volume 85.

As Editor I am particularly indebted to Alain Beaulieu for meticulous logistical support and to the Fellows and Emeriti of the Alpha Foundation's Institute for Advanced Studies for extensive discussion. Dr. David Hamilton at the U.S. Department of Energy is thanked for a Website reserved for some of this material in preprint form.

Finally, I would like to dedicate the volume to my wife, Dr. Laura J. Evans.

MYRON W. EVANS

Ithaca, New York

The Royal Swedish Academy of Sciences (KVA) hereby confirms its support to a joint production with John Wiley and Sons, Inc. of the collective scientific works by Professor Jean-Pierre Vigier. It is thereby understood that this endorsement only concerns and objective estimate of these works, and implying no economic obligation from the side of the Academy.

CONTENTS

THE PRESENT STATUS OF THE QUANTUM THEORY OF LIGHT By M. W. Evans and S. Jeffers	1
Topological Electromagnetism with Hidden Nonlinearity By Antonio F. Rañada and José L. Trueba	197
Ellipsoids in Holography and Relativity By Nils Abramson	255
Astrophysics in the Dark: Mach's Principle Lights the Way By D. F. Roscoe	297
A Semiclassical Model of the Photon Based on Objective Reality and Containing Longitudinal Field Components By Héctor A. Múnera	335
SIGNIFICANCE OF THE SAGNAC EFFECT: BEYOND THE CONTEMPORARY PHYSICS By Pal R. Molnar and Milan Meszaros	387
Non-Abelian Electrodynamics: Progress and Problems By Lawrence B. Crowell	403
Fluctuational Escape and Related Phenomena in Nonlinear Optical Systems By I. A. Khovanov, D. G. Luchinsky, R. Mannella, and P. V. E. McClintock	469
Beltrami Vector Fields in Electrodynamics—a Reason for Reexamining the Structural Foundations of Classical Field Physics? By Donald Reed	525
CONSTANCY OF VELOCITY OF LIGHT AND STOCHASTIC BACKGROUND	571
By Sisir Roy	

xii CONTENTS

ENERGY FOR THE FUTURE: HIGH-DENSITY CHARGE CLUSTERS By Harold L. Fox	623
The Superluminal Theory and Effects By Petar K. Anastasovski and David B. Hamilton	655
Superluminal Effects and Tachyon Theory By Fabio Cardone and Roberto Mignani	683
Topological Approaches to Electromagnetism By Terence W. Barrett	699
Author Index	735
Subject Index	751

THE PRESENT STATUS OF THE QUANTUM THEORY OF LIGHT

M. W. EVANS AND S. JEFFERS

Department of Physics and Astronomy, York University, Toronto, Ontario, Canada

CONTENTS

- I. Introduction
- II. The Proca Equation
- III. Classical Lehnert and Proca Vacuum Charge Current Density
- IV. Development of Gauge Theory in the Vacuum
- V. Schrödinger Equation with a Higgs Mechanism: Effect on the Wave Functions
- VI. Vector Internal Basis for Single-Particle Quantization
- VII. The Lehnert Charge Current Densities in O(3) Electrodynamics
- VIII. Empirical Testing of O(3) Electrodynamics: Interferometry and the Aharonov-Bohm Effect
 - IX. The Debate Papers
 - X. The Phase Factor for O(3) Electrodynamics
 - XI. O(3) Invariance: A Link between Electromagnetism and General Relativity
- XII. Basic Algebra of O(3) Electrodynamics and Tests of Self-Consistency
- XIII. Quantization from the B Cyclic Theorem
- XIV. O(3) and SU(3) Invariance from the Received Faraday and Ampère-Maxwell Laws
- XV. Self-Consistency of the O(3) Ansatz
- XVI. The Aharonov-Bohm Effect as the Basis of Electromagnetic Energy Inherent in the Vacuum
- XVII. Introduction to the Work of Professor J. P. Vigier
- Technical Appendix A: Criticisms of the U(1) Invariant Theory of the Aharonov-Bohm Effect and Advantages of an O(3) Invariant Theory
- Technical Appendix B: O(3) Electrodynamics from the Irreducible Representations of the Einstein Group

References

Publications of Professor Jean-Pierre Vigier

Modern Nonlinear Optics, Part 3, Second Edition, Advances in Chemical Physics, Volume 119, Edited by Myron W. Evans. Series Editors I. Prigogine and Stuart A. Rice. ISBN 0-471-38932-3 © 2001 John Wiley & Sons, Inc.

I. INTRODUCTION

If one takes as the birth of the quantum theory of light, the publication of Planck's famous paper solving the difficulties inherent in the blackbody spectrum [1], then we are currently marking its centenary. Many developments have occurred since 1900 or so and are briefly reviewed below. (See Selleri [27] or Milloni [6] for a more comprehensive historical review). The debates concerning wave-particle duality are historically rooted in the seventeenth century with the publication of Newton's Optiks [2] and the Treatise on Light by Christian Huygens [3]. For Huygens, light was a form of wave motion propagating through an ether that was conceived as a substance that was "as nearly approaching to perfect hardness and possessing a springiness as prompt as we choose." For Newton, however, light comprised material particles and he argues, contra Huygens, "Are not all hypotheses erroneous, in which Light is supposed to consist of Pression, or Motion propagated through a Fluid medium?" (see Newton [2], Query 28). Newton attempts to refute Huygens' approach by pointing to the difficulties in explaining double refraction if light is simply a form of wave motion and asks, "Are not the Rays of Light very small bodies emitted from shining substances? For such bodies will pass through uniform Mediums in right Lines without bending into Shadow, which is the Nature of the Rays of Light?" (Ref. 2, Query 29). The corpuscular theory received a major blow in the nineteenth century with the publication of Fresnel's essay [4] on the diffraction of light. Poisson argued on the basis of Fresnel's analysis that a perfectly round object should diffract so as to produce a bright spot on the axis behind it. This was offered as a reductio ad absurdum argument against wave theory. However, Fresnel and Arago carried out the actual experiment and found that there is indeed a diffracted bright spot. The nineteenth century also saw the advent of accurate methods for the determination of the speed of light by Fizeau and Foucault that were used to verify the prediction from Maxwell's theory relating the velocity of light to known electric and magnetic constants. Maxwell's magnificent theory of electromagnetic waves arose from the work of Oersted, Ampère, and Faraday, which proved the intimate interconnection between electric and magnetic phenomena.

This volume discusses the consequences of modifying the traditional, classical view of light as a transverse electromagnetic wave whose electric and magnetic field components exist only in a plane perpendicular to the axis of propagation, and posits the existence of a longitudinal magnetic field component. These considerations are of relatively recent vintage, however [5].

The corpuscular view was revived in a different form early in twentieth century with Planck's solution of the blackbody problem and Einstein's adoption of the photon model in 1905. Milloni [6] has emphasized the fact that Einstein's famous 1905 paper [7] "Concerning a heuristic point of view toward the

emission and transformation of light" argues strongly for a model of light that *simultaneously* displays the properties of waves and particles. He quotes Einstein:

The wave theory of light, which operates with continuous spatial functions, has worked well in the representation of purely optical phenomena and will probably never be replaced by another theory. It should be kept in mind, however, that the optical observations refer to time averages rather than instantaneous values. In spite of the complete experimental confirmation of the theory as applied to diffraction, reflection, refraction, dispersion, etc., it is still conceivable that the theory of light which operates with continuous spatial functions may lead to contradictions with experience when it is applied to the phenomena of emission and transformation of light.

According to the hypothesis that I want here to propose, when a ray of light expands starting from a point, the energy does not distribute on ever increasing volumes, but remains constituted of a finite number of energy quanta localized in space and moving without subdividing themselves, and unable to be absorbed or emitted partially.

This is the famous paper where Einstein, adopting Planck's idea of light quanta, gives a complete account of the photoelectric effect. He predicts the linear relationship between radiation frequency and stopping potential: "As far as I can see, there is no contradiction between these conceptions and the properties of the photoelectric effect observed by Herr Lenard. If each energy quantum of the incident light, independently of everything else, delivers its energy to electrons, then the velocity distribution of the ejected electrons will be independent of the intensity of the incident light. On the other hand the number of electrons leaving the body will, if other conditions are kept constant, be proportional to the intensity of the incident light."

Textbooks frequently cite this work as strong empirical evidence for the existence of photons as quanta of electromagnetic energy localized in space and time. However, it has been shown that [8] a complete account of the photoelectric effect can be obtained by treating the electromagnetic field as a classical Maxwellian field and the detector is treated according to the laws of quantum mechanics.

In view of his subsequent discomfort with dualism in physics, it is ironic that Einstein [9] gave a treatment of the fluctuations in the energy of electromagnetic waves that is fundamentally dualistic insofar that, if the Rayleigh–Jeans formula is adopted, the fluctuations are characteristic of electromagnetic waves. However, if the Wien law is used, the fluctuations are characteristic of particles. Einstein made several attempts to derive the Planck radiation law without invoking quantization of the radiation but without success. There was no alternative but to accept the quantum. This raised immediately the difficult question as to how such quanta gave rise to interference phenomena. Einstein suggested that perhaps light quanta need not interfere with themselves, but might interfere with

other quanta as they propagated. This suggestion was soon ruled out by interference experiments conduced at extremely low light levels. Dirac, in his well-known textbook [10] on quantum mechanics, stated "Each photon interferes only with itself. Interference between two different photons never occurs." The latter part of this statement is now known to be wrong [11]. The advent of highly coherent sources has enabled two-beam interference with two separate sources. In these experiments, the classic interference pattern is not observed but rather intensity correlations between the two beams are measured [12]. The recording of these intensity correlations is proof that the electromagnetic fields from the two lasers have superposed. As Paul [11] argues, any experiment that indicates that such a superposition has occurred should be called an interference experiment.

Taylor [13] was the first to report on two-beam interference experiments undertaken at extremely low light levels such that one can assert that, on average, there is never more than one photon in the apparatus at any given time. Such experiments have been repeated many times. However, given that the sources used in these experiments generated light beams that exhibited photon bunching [14], the basic assumption that there is only ever one photon in the apparatus at any given time is not sound. More recent experiments using sources that emit single-photon states have been performed [15–17].

In 1917 Einstein [18] wrote a paper on the dualistic nature of light in which he discusses emission "without excitation from external causes," in other words stimulated emission and also spontaneous absorption and emission. He derives Planck's formula but also discusses the recoil of molecules when they emit photons. It is the latter discussion that Einstein regarded as the most significant aspect of the paper: "If a radiation bundle has the effect that a molecule struck by it absorbs or emits a quantity of energy hv in the form of radiation (ingoing radiation), then a momentum hv/c is always transferred to the molecule. For an absorption of energy, this takes place in the direction of propagation of the radiation bundle; for an emission, in the opposite direction."

In 1923, Compton [19] gave convincing experimental evidence for this process: "The experimental support of the theory indicates very convincingly that a radiation quantum carries with itself, directed momentum as well as energy." Einstein's dualism raises the following difficult question: If the particle carries all the energy and momentum then, in what sense can the wave be regarded as real? Einstein's response was to refer to such waves as "ghost fields" (Gespensterfelder). Such waves are also referred to as "empty" - a wave propagating in space and time but (virtually) devoid of energy and momentum. If described literally, then such waves could not induce any physical changes in matter. Nevertheless, there have been serious proposals for experiments that might lead to the detection of "empty" waves associated with either photons [20] or neutrons [21]. However, by making additional assumptions about the nature