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PREFACE

This book is an exposition of semi-Riemannian geometry (also called
pseudo-Riemannian geometry)—the study of a smooth manifold fur-
nished with a metric tensor of arbitrary signature. The principal special
cases are Riemannian geometry, where the metric is positive definite, and
Lorentz geometry. For many years these two geometries have developed
almost independently: Riemannian geometry reformulated in coordinate-
free fashion and directed toward global problems, Lorentz geometry in
classical tensor notation devoted to general relativity. More recently, this’
divergence has been reversed as physicists, turning increasingly toward
invariant methods, have produced results of compelling mathematical
interest.

After establishing the requisite language of manifolds and tensors
(Chapters 1 and 2), the plan of the book is to develop the foundations of
semi-Riemannian geometry in the simplest way and without regard to
signature, allowing the Riemannian and Lorentz cases to appear as
needed (Chapters 3-5 and 7). Then in the latter half of the book two
threads are followed. One uses the notion of isometry to develop alge-
braic aspects of semi-Riemannian geometry: manifolds of constant curva-
ture, symmetric spaces, and homogeneous spaces (Chapters 8, 9, and
11); the introductions to these chapters will give a more detailed descrip-
tion of their contents. The other thread applies Lorentz geometry to spe-
cial and general relativity (Chapters 6,12, and 13). The fact that relativity
theory is expressed in terms of Lorentz geometry is lucky for geometers,
who can thus penetrate surprisingly quickly into cosmology (redshift,
expanding universe, and big bang) and, a topic no less interesting geomet-
rically, the gravitation of a single star (perihelion precession, bending of
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light, and black holes). The tendency of the spacetimes in Chapters 12 and
13 to have singularities (big bang and black holes) is accounted for in
abstract Lorentz terms by two theorems, due respectively to S. W.
Hawking and R. Penrose; these are the goals of Chapter 14.

The general approach of the book is coordinate-free; however, coordi-
nates are not neglected. Typically, geometric objects are defined inva-
riantly and then described in terms of coordinates. In particular, the defi-
nition of a tensor I have adopted converts almost automatically into the
classical coordinate formulation. A number of key proofs are given in
classical notation. This attitude is only reasonable in view of the vast
literature in each style.

The basic prerequisites for the book are modest: a good working knowl-
edge of multivariable differential calculus, a firm belief in the existence
and uniqueness theorems of ordinary differential equations, and an ac-
quaintance with the fundamentals of point set topology and algebra. Later
on, a knowledge of fundamental groups, covering spaces, and Lie groups
is required; the necessary background in these topics is outlined briefly in
Appendixes A and B. A college course in physics (particularly Newtonian
mechanics) is required, not to read this book, but to appreciate the trans-
formation and unification of Newtonian concepts effected by Einstein’s
relativistic geometry and the remarkable way the old and new theories—
so different at base—reach approximate agreement on, say, the running of
the solar system (Appendix C versus Chapter 13).

In the early chapters (1-5 and 7) the logical ordering is fairly strict.
Thereafter the two branches— 8,9,11 and 6,12,13— are almost indepen-
dent. (Chapters 12 and 13 require only an occasional reference to Chap-
ters 9 and perhaps 8.) Chapter 10 is used in Chapters 11 and 14. Otherwise
Chapter 14, though strongly motivated by Chapters 12 and 13, depends
logically on only the early chapters.

Following each chapter are a number of exercises; these are meant to
be workable without undue strain. In each chapter a single sequence of
numbers designates collectively the theorems, lemmas, examples, and so
on. For instance, Lemma 5.12 is the twelfth designated item in Chapter 5,
not the twelfth lemma. Within a given chapter, the chapter number is
omitted. Initials in square brackets, e.g., [SW], direct the reader to the
References.

It is a pleasure to express my gratitude to the authors of the following
brilliant and very different books: S. W. Hawking and G. F. R. Ellis, The
Large Scale Structure of Space-time; C. W. Misner, K. S. Thorne, and J.
A. Wheeler, Gravitation; R. K. Sachs and H. Wu, General Relativity for
Mathematicians.



NOTATION AND TERMINOLOGY

The following notations are among the most frequently used throughout
the book:

M, N manifolds P, q points

f,8h real-valued functions o B,y curves

v, w vectors V,W,X,Y vector fields

o, ¥ mappings U,V open sets
¢=(x',...,x")  coordinate system

R is the real number field, I denotes an open interval in R, and, for example,
[a, b) = {re R: a < r < b}. The identity map is id; ¢ o ¥ is the composite
mapping that sends p to ¢(yp). See Appendix B for Lie group notation such as
GL(n, R).

A mapping ¢: M — N is one-to-one (injective) if p # q implies ¢p # ¢q.
The image of ¢ is {¢pp: pe M} = N, and ¢ is onto (surjective) if image ¢ = N.
(Inclusion B < N does not exclude equality B = N.)IfB = Nthen¢ ™~ }(B) =
{pe M : ¢p e B}, and when ¢ is one-to-one and onto, ¢~ ! also denotes the
inverse mapping of ¢.

Ifno¢ = ¢,then @ is called a lift of ¢ through =. A lift of the identity map
is called a cross section (or merely a section).

A linear isomorphism of vector spaces is a linear transformation that is
one-to-one and onto, hence is invertible.

A subset 4 ofatopological space hasclosure 4, interior int A,and boundary
bd A.
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1 MANIFOLD THEORY

Generally speaking, a manifold isa topological space that locally resembles
Euclidean space. A smooth manifold is a manifold M for which this resem-
blance is sharp enough to permit the establishment of partial differentia-
tion—in fact, all the essential features of calculus—on M. Smooth manifolds
are thus the natural setting for “calculus in the large.”

SMOOTH MANIFOLDS

Euclidean n-space R" is the set of all n-tuples p = (py, ..., p,) of real
numbers. We assume in particular a familiarity with its structure as a vector
space and as a topological space. The natural inner product of R" is the dot
productp+q =Y p;q;, with norm|p| = _/p * p. The resulting metric d(p, q) =
|p — q} is compatible with the topology of R".

A real-valued function f defined on an open set % of R" is smooth (or
equivalently, C*) provided all mixed partial derivatives of f—of all orders—
exist and are continuous at every point of %.

For 1 <i<mn, let u': R" - R be the function that sends each point
p=(py,...,p,) to its ith coordinate p,. Then u',...,u" are the natural
coordinate functions of R".

A function ¢ from an open set % of R™ to R" is smooth provided each real-
valued function u'o ¢ is smooth (1 < i < n).

We can now make precise the resemblance to Euclidean space mentioned
above. A coordinate system (or chart) in a topological space S is a homeo-
morphism ¢ of an open set % of S onto an open set &(%) of R". If we write

&p) = (x'(p),...,x"(p)) foreach pe,
1



2 1 Manifold Theory

the resulting functions x?, ..., x" are called the coordinate functions of £. Thus
E=(x'...,x"):% - R"

Here we call n the dimension of &. Note the identity u'o & = x.

Two n-dimensional coordinate systems & and # in S overlap smoothly
provided the functions £on~! and no &~ ' are both smooth. Explicitly, if
E:U — R"and : ¥~ — R", then 5 o ¢! is defined on the open set &(# N ¥")
and carries it to n(% ~ ¥")—while its inverse function £o#n~! runs in the
opposite direction (see Figure 1). These functions are then required to be
smooth in the usual Euclidean sense defined above. This condition is con-
sidered to hold trivially if  and ¥~ do not meet.

R U NY) U n¥y) R"
no&!
—_—
gon™! ;
&) n(*¥’)
4 n
% s
U v
Figure 1.

1. Definition. An atlas o/ of dimension n on a space S is a collection of
n-dimensional coordinate systems in S such that

(A1) each point of S is contained in the domain of some coordinate
system in ¥”, and
(A2) any two coordinate systems in &/ overlap smoothly.

An atlas on S makes it possible to do calculus consistently on all of S. But
different atlases may produce the same calculus, a technical difficulty
eliminated as follows. Call an atlas 4 on S complete if € contains each co-
ordinate system in S that overlaps smoothly with every coordinate system in €.

2. Lemma. Each atlas .« on S is contained in a unique complete atlas.

Proof. If o/ has dimension n, let &' be the set of all n-dimensional
coordinate systems in S that overlap smoothly with every one contained in .«¢.

(a) &' is an atlas (of the same dimension as 7).



Smooth Manifolds 3

Since (A1) is obvious, consider (A2). If ,, n, € &', then by symmetry we
need only prove that the function 5, o n5 ! is Euclidean smooth. For any point
pe R’ in its domain, choose a ¢ € o whose domain contains 75 '(p). As a
composition of smooth functions, (1, o £~ *) o (£ o 3 ') is smooth. Since this
function equals 7, ° 5 ! on a neighborhood of p, the latter is smooth on that
neighborhood. Smoothness being a local property, (a) follows.

(b) o is complete. If a coordinate system ¢ in S overlaps smoothly with
every element of &' > o, then by definition £ € "

(c) ' is the unique complete atlas containing <.
If € is another, then since € contains <, (A2) guarantees that ¥ < .«’. But
then (A2) implies o' <= %. ]

3. Definition. A smooth manifold M is a Hausdorff space furnished
with a complete atlas.

There are many variants of the notion of manifold but for us manifold will
mean smooth manifold as above. Any atlas o on a Hausdorff space makes it a
manifold since we agree always to use the unique complete atlas containing
o to fulfill Definition 3. The dimension n = dim M of a manifold M is the
dimension of its atlas, and is often indicated by the notation M".

A coordinate system ¢ in a manifold M is a coordinate system belonging to
the complete atlas of M. If the domain # of ¢ contains the point p e M, then
¢ is called a coordinate system at p and % a coordinate neighborhood of p.

If ¢ is a coordinate system in M and ¥ is an open set contained in the
domain of &, then by completeness £|7” is also a coordinate system in M.

4. Examples of Manifolds. (1) The identity map (4, ..., u") of R, by
itself, is an atlas. From now on, R" will denote the resulting n-dimensional
manifold, called Euclidean n-space.

(2) The sphere S". Let S" be the subspace {ae R"*!:|a| = 1} of R"*1.
Foreachl <i <n + 1,let %; [%; ] be the open hemisphere consisting of all
points a with a; > 0 [a; < 0]. The restriction to %, or %; of the coordinate
functions u',...,u'"Lu'* 1 . u"*!gives a coordinate system in the space S".
It is easy to check that the 2(n + 1) coordinate systems gotten in this way
constitute an atlas on S" making it an n-dimensional manifold.

(3) A two-dimensional manifold is often called a surface, and generalily
speaking, the objects called surfaces in elementary calculus (torus, cylinder,
paraboloid, etc.) are two-dimensional manifolds.

We now consider two simple ways to get new manifolds from old.
Let % be an open set in a manifold M. Let o’ be the set of all coordinates
systems ¢ in M such that the domain of ¢ is contained in %. By the remark
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preceding Example 4 these domains cover %. Hence &' is an atlas on %, mak-
ing it a manifold called an open submanifold of M. Open sets of a manifold will
always be considered to be open submanifolds.

If M and N are manifolds, let

E=(x!...,x™): % —> R" and n=04%...,y): ¥ >R

be coordinate systems in M and N, respectively. The product function
Exn:U x v — R"" is defined by

& x M@ g =@, ..., x"®), y' @), ..., V(@)

Evidently ¢ x 7 is a coordinate system in the Hausdorff space M x N, and it
is easy to see that any two such product coordinate systems in M x N overlap
smoothly.

5. Lemma. If M and N are manifolds, then the set of all product
coordinate systems in M x N is an atlas on M x N making it the product
manifold of M and N.

The dimension of M x N is dim M + dim N. This construction extends
in an obvious way to the product of any finite number of manifolds. Indeed
Euclidean space R", as in Example 4, is exactly the product manifold R* x - --
x R* (n factors).

SMOOTH MAPPINGS

Consider first the special case of a real-valued function f on a manifold
M. If &:% — R" is a coordinate system in M, then the composite function
fo &1 E(U) — R is called the coordinate expression for f in terms of &. In
fact,

f =& HEYL...,x") on 4%«

(Compare, from elementary calculus, expressing a function f = f(x, y) in
terms of polar coordinates.) It is natural then to define a function f: M — Rto
be smooth provided that for every coordinate system ¢ in M the coordinate
expression f o £~ ! is smooth in the usual Euclidean sense. Let §(M) be the
set of all smooth real-valued functions on M. If f and g are smooth functions
on M so is their sum f* + g and product fg. The usual algebraic rules hold for
these two operations, making (M) a commutative ring. Multiplicative
inverses do not exist in general, but if f € (M) is never zero, then 1/ € F(M).

The notion of smoothness extends from a real-valued function to an
arbitrary mapping of manifolds using the same idea: that coordinate ex-
pressions must be Euclidean smooth.



