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FOREWORD

Seismic qualification methods have been the subject of continuous discussion since
seismic loads became the key part of design requirements for nuclear power plants. In the
1960's, the emphasis of seismic qualification was focused on laying the ground rules for
achieving a consistent and conservative design basis. This effort continued in the 1970’
enhanced by the newly found theory of plate tectonics. By the late 1970's, significant
accomplishments had been made in all areas of seismic design and qualification methods,
culminating in the issuance of numerous Nuclear Regulatory Commission regulatory
guides and nuclear industry standards. It is to be anticipated, however, that much of the
earlier developments were centered in conservatism rather than accuracy and reliability.
Although the intent was to insure the safety of nuclear power plant design, the more con-
servative prediction of seismic loads may not have improved the overall safety margin dur-
ing normal operating conditions, especially for systems and components under high
temperature environments. Therefore, it is necessary to doubly emphasize the need of
developing realistic qualification methods, which would provide more reliable seismic
loads leading to a balanced design.

This special publication contains papers presented in the Symposium on Seismic
Analysis of Systems and Components, sponsored by the Operations, Applications, and
Components Committee, at the 1983 Fourth National PVP Congress. It provides a glimpse
of some of the more significant advancements in the area of seismic qualification with
the emphasis on accuracy and reliability, not just conservatism.

For instance, it is found in one paper that the closely spaced modes requirement can
be too conservative for a small piping in resonance with a large piping. A method was
developed to reduce the subsystem response to a more realistic level. In another paper,
the excessive conservatism of the envelope response spectrum analysis and the adequacy
of the multiple support response spectra approach were demonstrated through a com-
parison with the time history analysis. The latter method is the subject of another paper
that presented a large amount of test data in an attempt to quantify the advantage of the
method. Also included in this volume are two papers dealing with piping damping values.
This is a subject of particular importance, not only because it is a key factor in determin-
ing the correct piping response loads, but also because of the issues that have been raised
concerning the existing regulatory positions. More test data sould no doubt contribute to
an early satisfactory resolution of these issues. These and other papers included in this
volume provide a significant contribution to the state of the art development, and toward
a much more reliable, efficient, and realistic basis for seismic design.

On behalf of the ASME, the editors wish to express their sincere thanks to the authors
and the reviewers for their effort in making this publication a reality.

Chi-Wen Lin
Westinghouse Electric Corporation
Pittsburgh, Pennsylvania

M. K. Au-Yang

Babcock and Wilcox
Lynchburg, Virginia
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PIPING DYNAMIC ANALYSIS WITH SUBSYSTEM/SYSTEM INTERACTION

C.-W. Lin and T. C. Esselman
Westinghouse Electric Corporation
Pittsburgh, Pennsylvania

ABSTRACT

In a piping analysis which consists of lines of different sizes, diffi-
culties can develop when the two systems have similar modal response magni-
tudes and the frequencies are close to each other where closely spaced modes
requirement is to be satisfied. When two modes are very close to each other
and have similar magnitudes on modal coefficients, the use of a closely spaced
modes formula would result in the absolute combination of the two modes,
regardless of the signs of the two modal coefficients.

In this paper, the two modal coefficients for a two-degree-of-freedom
system (representing the system and subsystem coupled model) are first studied
to prove that they have opposite signs. Next, the response equation for the
subsystem is studied to arrive at a most probable maximum response for the
subsystem. A formula is then developed to obtain reduction coefficients when
the response is computed using the closely spaced mode requirements. This
formula can then be used by analysts to compute a more realistic subsystem
response for modes which are in resonance with the main system and which have
been found to have unrealistically large response loads.

NOMENCLATURE

c Ratio of participation factor times mode shape (at mass 2) for
masses 1 and 2.

K1,K2,Ke Spring constants for masses 1 and 2, and between masses.

M1,Mo Masses for masses 1 and 2, respectively.

P Participation factor for mode i.

Hi Second derivative of the generalized coordinate for the ith
mode.

R Response reduction factor.

RfsRksRm Ratio of frequencies, spring constants, and masses for the
two-mass model.

Sa () Acceleration response spectral value at the frequency =.

Ug . Acceleration input. )

X1,X2 Absolute acceleration response for masses 1 aqd 2, respectively.

w1,wp Natural frequency for masses 1 and 2, respectively, when

decoupled.



813,924 Mode shape for masses 1 and 2, respectively, for mode i.

T ith mode natural frequency for the coupled model.
B Damping ratio.
INTRODUCTION

In a piping analysis which consists of lines of different sizes, diffi-
culties can develop in two areas. First, when there is a large difference in
piping sizes in the model, numerical instability could result for modes where
modal effective mass ratios become very small. For such lines, a decoupled
analysis would be appropriate. Or, if it is desirable, a coupled analysis can
be made using a double precision version of the computer program. However,
the latter effort is generally more time consuming and costly. Therefore,
coupling of the system and subsystem is not recommended if and when the piping
sizes are judged to have the potential of creating numerical difficulties.

In this paper, special attention is given to the second area of diffi-
culties when system and subsystem are coupled. This area of difficulties
arises when the two systems have similar modal response magnitudes and the
frequencies are close to each other where closely spaced modes requirement
(Reference 1) is to be satisfied.

The three modal combination methods recommended in Reference 1 are in
similar form compared with that presented in Reference 2 for closely spaced
modes. However, one important difference exists. While Reference 2 allows
the sign of each modal coefficient (participation factor times mode shape
coefficient) be maintained, Reference 1 requires that all signs be positive.
When two modes are very close to each other and have 'similar magnitudes on
modal coefficients, the use of Reference 1 would result in the absolute
combination of the two modes, regardless of the signs of the two modal
coefficients. For the two frequencies which are very close to each other, the
generalized coordinates (as represented by Duhamel's Integrals) combine to
form a beat type of motion. Therefore, the signs and the magnitudes of the
modal coefficients have a strong bearing on the final response value. This
has been recognized by Reference 3 in its probabilistic estimation of the
final response. Since the use of absolute signs in Reference 1 is only to
increase conservatism and not based on any mathematical fact, it should be
modified whenever justifiable.

In References 3 and 4, a justification is provided for subsystems with
extremely small masses such that a reduction in response can be made from the
use of Reference 1 methods. However, since subsystems with extremely small
masses need not be coupled with the main system (or else numerical instability
could occur), the recommendation in Reference 3 has only a limited practical
value.

In this paper, the two modal coefficients for a two-degree-of-freedom
system (representing the system and subsystem coupled model) are first studied
to prove that they have opposite signs. Next, the response equation for the
subsystem is studied following the same analogy of Reference 3 but without
using the assumption of extremely small mass ratios for the subsystem and the
main system. In this study, the nature of the modal coefficients for the
model with closely spaced modes is utilized (including the fact that the two
modal coefficients have opposite signs) to arrive at a most probable maximum
response for the subsystem. A formula is then developed to obtain reduction
coefficients when the response is computed using the closely spaced mode
requirements set forth in Reference 1. This formula can then be used by
analysts to compute a more realistic subsystem response for modes which are in
resonance with the main system and which have been found to have unrealisti-
cally large response loads.

MODAL COEFFICIENT CHARACTERISTICS FOR A TWO MASS SYSTEM

In order to properly represent a subsystem and a system in its coupled
state, a two-degree-of-freedom model shown in Figure 1 is constructed, where
M1 represents the large mass of the system and mp represents the small
mass of the subsystem. Masses M; and my are connected by a spring K.



In addition, each mass is supported by a spring (Ki and K, respectively).
Therefore, the model closely resembles the subsystem and system design where
they are connected but also supported by independent supports.

The natural frequencies of the combined model can be written as the
following:

",2.2 1 2\ - 2,2 2, 12

(_;I_) =5 {(L+R +RY) FL(L+R -RE+aRIRI} (1)
where w1 » represents either first or second mode of the coupled model

corresponding’to the values calculated by taking either "-" "+" sign in the

right hand side equation, respectively. In addition, Rg, Rg, and Ry are

the stiffness ratio, frequency ratio, and the mass ratio represented by the

following:

K

R, = < (2)

K K1

Rf = wplwy (3)
and

Rm = mZIM]_ (4)
where 1/2

wy = (Kp/Mp) (5)

wp = (K * K)/2/my (6)
are the decoup]ed frequenc1es for mass 1 and mass 2, respectively.

The mode shape coefficients for the two masses have the following ratios
(Reference 5):

2
i jg R - Ty (7)
b " K K 8

91

i=1,2

where subscript i represents the i th mode, and t} and ¢p are the
mode shape coefficients for masses 1 and 2, respectively.

The participation factors can be written in the form as follows:

M ¢11 ¢21'

P.
2
1 M 6,7+ my by,
2
6. 6.
1 1i | iy,
- 5, 5y Rl * Ry (8)
Or, one may write
2
Py By = (a— +R )/[(3—) +R.] (9)

Finally, the acceleration response (X) for both masses can be written in
the following form:

—P1¢j1q1+P2¢j2q2,3=1’2 (10)



Here subscript j represents the mass number 1 or 2, g and g are the
generalized coordinates for modes 1 and 2, respectively, and overéot shows
that it is a time derivative.

It has been shown in Reference 4 that the response of the large mass
system (Mj) is usually small and bounded. It is only when dealing with the
subsystem response for the small mass myp that the response becomes in
question. Hence, this paper will concentrate on studying the response of mp
which is

Xy = Py 8y a1 * Py 8y Gy (11)

It is to be noted here since the two modes have very close frequencies,
the response indicated by the generalized coordinates g1 and gp will have
similar magnitudes and probably even with the same signs. Therefore, to study
Eq. (11), it is essential that the sign relationship be known for Py @51
and P ¢2o. To do so, one may write

) 6
1 12
R -— +R
PLoor _ % M o ™
P2 ¢22 (¢11)2 A (¢12)2 .
+ +
S0 M T m
2
¢ )
11 12
e * Ry (E_—) * Ry
21 22
= (12)
12 o (‘511)2 :
+ +
S0 M By M
Therefore, to identify the sign relationship of Py ¢p1 and Py
$20, one has only to study the signs of
¢ ¢
11 12
—= + R and — + R
90 M By M
To do so, the denominator of the right hand side of Eq. (7) may be
manipulated with the help of Eq. (1) to yield the following equation:
. 2 =
2 2 2 2
L+R -5 =s{(1+R -RA) + [(1+R -RA +arR I} (13)
“1
Hence, for Rc < 1,
2
"1
1+ RK -— > 0 (14)
Y1
Also, for Rf > 1 and RK > 0,
1
2.8 9. 2 2
[(1+ Ry - Re )+ 4RK /Rm] > (1 + RK - Rf ) (15)

This implies that Eq. (14) is valid also for Rf < 1.



Consequently,

;ll +R >0 (16)
21

Similarly, the use of Egs. (1) and (7) results in an equation comparable
to Eq. (13) but with a different sign in front of the bracket "[ ]" term. By
comparing terms in the equation, it is obvious that

"g 1 2 2,2
1+ RK -<=3 (1 + RK - Rf ) - [(1 + RK - Rf ) o+
“1
3
2
R RIS <0 (17)

That is, for all R¢ (whether it is larger than, equal to, or less than
zero), Eq. (17) is a negative quantity.
Consequently one concludes that

os12+R <0 (18)
Gy M

Finally, by substituting Eqs. (16) and (18) into Eq. (12), one arrives at
the following conclusion:

P, ¢
1 721

- % 0 (19)
2 722

In other words, Py #p1 and Py ¢pp will always have a different
sign from each other. This is an important conclusion, one that should have a
direct bearing in the study of the combined response motions.

DYNAMIC RESPONSE OF THE TWO MASS SYSTEM WITH CLOSELY SPACED MODES

The dynamic response of the two mass system discussed in Chapter 2 can be
written as the following

. 2
Xo (t) = &

B 9 By By (20)

1
where G; is the second derivative of the generalized coordinate®i with
i =1, 2 representing the first and the second mode, respectively. Only
response of the second (1lighter) mass is represented in Eq. (20) since the
response in first (heavier) mass can be shown to have a response value sub-
stantially less than mass 2, and is, therefore, less of an interest.
The second derivative of the generalized coordinate can be written in the
following form

. t . -8 m; (t -1)
q; = ‘I uq (t) e g N sin 5 (t - 1) dt (21)

where wj is defined in Eq. (1) and 8 is the modal damping and has been
assumed the same for both modes. This is a very realistic assumption in view
that the two modes are closely spaced where a Rayleigh damping approach would
imply essentially the same damping values for both modes. Secondly, the two
modes would exhibit approximately the same total energy (e.g., the larger mass
with smaller vibration response and the smaller mass with the larger vibration



response). Therefore, the two damping values can be assumed the same without
loosing generality. .

Also in Eq. (21), ugq is the acceleration base input. It is assumed the
same for both supports. “For supports with different inputs, the treatment
would be more involved. However, should the support inputs be drastically
different, the subsystem/system response could be alleviated by using the
multiple support spectra approach. Only when the support inputs are similar
would large response be anticipated for a secondary system. Therefore, the
assumption of an uniform base input is considered to be representative.

Combining Eqs. (19), (20), and (21), one may write

Xy = Py byp (~c 4y * 3,) (22)
where c is defined as

c = P1921/(Pp 855) (23)

and is a positive quantity. .

It is obvious that from Eq. (22), Xp is entirely dependent on the
magnitudes of §; and G and the time when the two terms are combined.

To study Eq. (22), it is important to point out that c can be shown to be
greater than 1; and the value is close to 1 when the two modal frequencies are
within the resonance range (within 10 percent of each other), If, however, c
is substantially larger than 1 (a possibility for very small stiffness ratio
Rk), then even when dl and g have a similar magnitude, the two terms in
Eq. (22) will not be of the same magnitude. In such a case, it is of a lesser
concern how the two terms should be properly combined, since the first term
will most likely govern.

When ¢ is close to 1, Eq. (22) can be rewritten as the following

%y = Py by [(<d; * 8,) - (c - 1) 4] (24)

It is obvious that c is assumed to be larger than or equal to 1. Should
this assumption be invalid, then the multiplier Py $55 should be modified
to Py #p7 so that the revised c will be larger than %.

As a conservative measure, Eq. (24) may then be treated in the following
manner:

X < Poby, [a -4 + (c-1)|q ] (25)
| Zlmax 2 "22 I 1 2 lmax l ll max

where [ + | represents the absolute value.

The overconservatism of Eq. (25) depends primarily on the value of c.

The first part of Eq. (25) can be expanded as:

. e t S -B ‘"1 (t - T)
4 - 4dp = ~£ ug (t) [ﬂl e sin 2 (t - 1)

-8 -nz(t - 1) .
-m, e sin m, (t - 1)] dt (26)

To further develop Eq. (26), some approximation has to be made.

First, the integrand in Eq. (26) represents two similar (but with
opposite phase) modulating sine waves; and v and wp are very close to
each other (within, say, + 10 percent using the closely spaced rule). The
magnitude of the integrand will be a maximum if it is assumed that the
multiplier wq and = is equal to = where

“2 =% (ni + 'Il'g ) (27)



As seen from Eq. (1), this requires that the second term (bracketed [ ]
term) be dropped for né and n%. This in fact makes w% somewhat larger and

n% somewhat smaller. Hence, the integrand will result in a larger value than
indicated by Eq. (26).

Secondly, recognizing that the exponential terms form the envelopes of
the modulating sine waves, these envelopes are slowly varying time functions.
Therefore, the =7 and wp in the exponential functions can be replaced by
the averaging frequency showing in Eq. (27) without significant effects.

Consequently, Eq. (26) may be modified as follows:

. t 8 n (t -
G-t g @ e® D fsina (¢ -0 -
0

sin T, (t = 1)] dt (28)

Eq. (28) may be rearranged to yield

t
5 a . o t-T)
4y - q, = 2% i () e® ( cos v (t - T)
1772 J;g
sinn (t = T) dT (29)
where
M — W
n = 2 y 1 (30)

The integrand in Eq. (29) represents a modulating sine beat with a beat
frequency of n and the motion modulated by the exponential function. Since n
is a small value, the beat motion has a rather long period. When the two
frequencies differ by less than 10 percent of each other, the beat frequency n
is approximately 5 percent of the basic frequency of ». That is, there will
be twenty basic frequency waves occurring before the occurrence of one full
beat frequency.

Eq. (29) can be expanded as the following:

t
o . ve - t -T)
Gy - q, = 2w U () e® T ( cos w (t - T)
1 2 fo g
[sinntcos nT-cosntsinnT]dT (31)

Eq. (31) may be further simplified by using the following approximation:

cos v (t = T) cosnT

$lcos (nt-(x-n)T)

+cos (mt - (n+n)T)]

=cos n (t -T) (32)

for small n when compared with =. This assumption is valid for closely
spaced modes since n represents the difference of the two frequencies (which
is within plus or minus 10 percent of each other) divided by 2 (Eq. (30)).
Therefore, n is 1ikely to be within 5 percent of =». Also, the two terms in
the first part of Eq. (32) consist of n with opposite signs. That is, one
term will have neglected n on the up side then the other would have neglected
n on the down side. They tend to compensate each other. Therefore, Eq. (32)
is a fairly realistic approximation.



Similarly,

cos v (t - 1) sinn T

% [sin (ut - (0 - n) 1)

- sin (wt - (w*n) 1)) (33)
=0

for small n when compared with =.

Both Egs. (32) and (33) can be confirmed by simply integrating the terms
over the region of 0 to t for the variable t. When n is assumed small
compared with n, the approximate results in both equations will be equal to
the exact solutions.

Substitution of Eqs. (32) and (33) into Eq. (31) results in the following
equation:

.e .. t s = - -
4 -, = 5 sin @ & J; ug G} g gw (t-1)cosn (t-1)dr (34)

which can be expanded to yield

31 - ﬁz =2nsinntef ™t -/;t Ug (1) B " T
(cos mtcoswT +sinntsingt)de (35)

Let

t.. BwT
A= fo ug (t) e cos n T dt (36)
and

t. BT
B = ~/; Ug (t) e sin v T dt (37)
Eq. (35) becomes
51 - HZ =2rsinnte? ™ L (Acos mt+Bsinnt) (38)

Using the same approach as used in Reference 6 (p. 393), Eq. (38) can be
shown to be

1

B vl (A2 + BZ)?-cos (v t - a) (39)

al - 62 =2rsinn te
where

a = tan -1 % (40)



As has been illustrated in Reference 6, the term (A2 + B2)1/2 is nearly a
constant after the initial rise time; and it relates to the sum of the
potential and kinetic energy in the following manner

me =V + KE = 3 (A% + 8%) (41)
where m is the mass, € is the energy for the unit mass, and V and KE
symbolize the potential and kinetic energy, respectively.
Therefore, Eq. (39) can be related to the total energy of a unit mass

with a frequency = in the following manner:

1

51 - HZ =2 (Ze)?. wsinnte? ™t

cos (vt - a) (42)

The absoJute maximum value of Eq. (42) can then be written as

1
|al_62| < 2n (2:)?lsinnte'8“tcos (ﬂt—a)l
max max
1
< 2n (2e)? Isin ntef ™ tlmax ICOS (n t - G)I ok
1

<o (260 [sinnte® ™Y (43)

max

As developed in Reference 6, (2¢)1/2x is simply the acceleration
response spectrum value S;(r) at the frequency .
To evaluate the absolute maximum of

sinnte® ™t
one may take the partial derivative of the product with respect to t and

then set the solution to zero and solve for t.
This results in the time (t*), where the product will be a maximum

1 -1, n
t*x = o tan (B—") (44)

Substitution of Eq. (44) into Eq. (43) yields

-8 m t*

i -, <25 e e w
where
1
sinn tx =gl (1 (L) 1 (46)

Eg. (45) is not that much different from the equation derived in
Reference 3. However, none of the assumptions made in Reference 3 were
utilized herein. Therefore Eq. (45) can be used without any restrictions on
mass ratio, frequency ratio, response time and earthquake durations.

Finally, by substituting Eq. (45) into Eq. (25) one arrives at the
absolute maximum response for the secondary mass which can be written as



. = t*
X < P, ¢ 2S.(x) sinntre® ™ + (c-1) S_(m)
2 roie 2 722 { a a‘'l }

Po 922 {2 sinntre® T4 (o D} Sa() (47)

for =1 close to .

Eq. (47) should be used for two closely spaced modes. Conversely, if it
can be shown that for the two closely spaced modes, Pj $12 and P ¢ i
have the opposite sings at nodes with the predominant motions, Eq. % 8) can
also be used to supplement the formulas recommended for closely spaced modes
in Reference 1.

In view that Eq. (47) has been derived at using generally conservative
assumptions, it most likely results in an upper bound estimate for the secon-
dary mass response. To arrive at a possible reduction from the closely spaced
mode formulation when Eq. (47) is not used, it is acceptable then to assume
that the two modes coincide, i.e., the e's in the cross product terms of the
closely spaced modes formulas are 1. With such an assumption, the final
combination becomes an absolute sum of the two modes. Hence, the absolute
maximum response of the secondary mass becomes

Ilemax - (lpl bip| + 1Py 85510 5,()

= [Py by e+ 1) s () (48)

The ratio of the absolute sum resulted from the closely spaced modes
formulations and the more realistic.solution recommended in Eq. (47) becomdes
then a reduction factor R, which is

P*lmax _ (c +1) (49)
= = . = t*
|x2|max 2sinntre® ™Y 4 (c-1)
Eq. (49) contains n and = which are functions of Rg, Rf, and Rp.
It can be simplified by recognizing that
n=g =) =l -m?) I (50)

Using Eq. (1) and making the assumption that the average frequency (=) of
the coupled model differs only by a negligible amount from the main system
frequency wy, one concludes that

1

2
n 1 2 2 2 _
T =g L+ R -RS) + 4R/ RIT = (51)
Hence,
Bmtr=08n % tan~1 (EHF) = EEE;——l (52)
Also, from Eq. (46), one has
1
sin n t* = A/[1 + A%] 2z (53)

Consequently, Eq. (49) becomes

10



1
(c+1) (1+8 72

R = (54)

-1
2y e-tan = A/ (c-1) (1+ XZ) 2

Eq. (54) can be used to reduce the responses computed for the secondary
mass when under subsystem/system interaction mode. That is, when the secon-
dary system has a frequency close to one of the main system frequency and the
secondary system response has been observed to be greatly affected by the main
system.

Finally, it is to be noted that, when c is assumed to be equal to 1 (for
such subsystem/system mass ratios to be extremely small), Eq. (54) reduces to
the form exactly the same as recommended in Reference 3. However, the deri-
vation in Reference 3, in addition to the requirement of very small mass
ratio, also requires that the duration of the earthquake be short and the
secondary mass response be occurring after the earthquake motion has ended.
Since the only assumption used in the derivation of Eq. (54) is that the
frequencies are close (within + 10 percent), Eq. (54) can be applicable to any
subsystem/system interaction analysis with closely spaced modes without any
further limitations as required in Reference 3.

NUMERICAL EXAMPLES AND CONCLUDING REMARKS

Eq. (54) has presented the reduction factor for the secondary system
response when computed using the absolute sum rule. However, since absolute
sum is only a result of two modes being extremely close to each other, a
proper reduction factor applicable for closely spaced modes remains to be
derived. To do so, one may review the following inequalities

lRZ*Imax 2 Iiglmax ZI-;;lmax (55)

.-* . .
where lx is the absolute sum solution.

2|max

Presented in Eq. (48), |%p|max indicates the closely spaced modes
solution using a c]ose]y space% mode formula, and I 2|max is the square root
sum of the squares solution for the modes.

Obviously, to insure a conservative solution for all cases of closely
spaced modes, it is necessary that the reduction factor be the smallest. That
is, when | Xp|max 1is divided by the reduction factor R, the result should be
greater than the true solution |Xp|pax (computed from Eq (47)). This
implies that for closely spaced modes, the reduction factor should be computed
using Eq. (48) and divided by the square root sum of the squares solution.
That is,

|§;lmax

Ilemax

(56)
1 1

2, 9% (1 + 322
-
2xe~taN AN L 1y (1429

(c

172

where it has been assumed that the closely spaced modes have response
values essentially the same as at the average frequency w=. This is a realis-
tic assumption in view that the two modes are no more than 10 percent apart
and the use of square root sum of the squares rule yields smaller reduction
factor than using the cross coupling term (e) in the numerator of Eq. (56).
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It should be pointed out here that Eq. (56) could be too conservative to
certain closely spaced modes, especially if the two modes are quite close. 1In
such a case, the closely spaced modes formula should then be used to replace
the square root sum of the squares formula in deriving Eq. (56). However,
since such derivation depends on each individual case of frequency, damping,
and earthquake motion duration, its application is left to the user when he so
desires.

To show how Eq. (54) can be used in the actual application, Figures 2 and
3 have plotted the reduction factor versus a. Figure 2 is for the case where
the two frequencies are very close where closely spaced modes solution is
approaching that of absolute sum value. Whereas Figure 3 is for the case
where the frequencies are not so close such that closely spaced modes solution
is approaching the square root sum of the squares case. A comparison of
Figures 2 and 4 shows that there is a large difference between the two cases.
For instance, for a » of 0.1 and when the modal response ratio (c) is 1.0, the
response reduction for the resonance case is about 26, and it is only 20 for
the closely spaced modes case. Therefore, it may be desirable to compute R
using the closely spaced formula instead of the square root sum of the squares
rule. Nevertheless, both Figures 2 and 3 show dramatic response reduction
even for a large c, say 2, except for a A greater than 3. It should be noted
here that when c is large, it signals that the two modes have substantial
difference in the modal response magnitudes. Hence one mode will have more a
pronounced effect on the final response than the other mode. It is, there-
fore, reasonable to expect that the reduction factor will be smaller. Also,
when A is larger than 3, Figure 3 shows that the reduction factor may be less
than 1, if the curves are allowed to be continued. This implies that the use
of square root sum of the squares formula may not be conservative. The use of
closely spaced modes formula without any response reduction may indeed be
necessary in such a case.

Figures 2 and 3 are based on a damping value of 2 percent. Since piping
systems could have damping values ranging from 0.5 percent to 2 percent for
0BE, depending on pipe sizes, it may be desirable to evaluate the effect of
damping on the response reduction factor. However, a glance at Figure 4 shows
that damping has only a very minimal effect on the response reduction factor.

In Figures 2, 3 and 4, » is used as the abscissa. Since a» is a function
of mass ratio, stiffness ratio and frequency ratio, the influence by these
factors has to be studied. For this purpose, Figure 5 has been plotted which
shows A/A* versus a, where i* is the x value computed for Rf = 1.0 and
Rk = R? Rms A is the value computed for a given Ry with Rf = 0.9 and
ratio Ry = a R? Rm. Figure 5 shows that x value is essentially constant for
small mass ratios at and below 0.002. This indicates that stiffness ratio
plays only a minor role for very small mass ratios. Also, the biggest
influence of the stiffness ratio seems to come from when a is larger than 0.4
for mass ratios at and below 0.02.

A second study of A/r* versus a is presented in Figure 6. In this
figure, the a/a* is seen essentially unchanged for Ry at and below 0.8 for a
mass ratio of 0.01. Again, similar to Fiqure 5, the ratio changes more
rapidly when a is at and above 0.4 for Rf to be as high as 0.9.

Figures 5 and 6 illustrate that when a is less than 0.4 with R¢ less
than 0.9 and Ry less than 0.02, x can be treated the same as * (i.e., at
resonance). Under these conditions, the response reduction factor becomes
large even when the subsystem and the system are not within the resonant
range. This shows that the coupling of the two systems may not be necessary
since a large reduction factor would reduce the coupled response to a low
level. Conversely, when a is above 0.4, Figures 5 and 6 both show large
increases in the ratio of a/a*. A larger ratio of A/r* means that the
response reduction becomes smaller, as evidenced in Figures 2 and 3. This
means that whatever response is computed in the coupled model, it could not be
reduced substantially, and the response may be real. Therefore, coupled
analysis could be a necessity when a is larger than 0.4.

In order to compare the effect of different response reduction factors
(e.g., Egs. (54) and (56)), Table 1 has been prepared. In this table, the two
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