€ N\

UNDERSTANDING

SEGOND
EDITION

NEN SHUMATE

UNDERSTANDING ADA

WITH ABSTRACT DATA TYPES

Second Edition

KEN SHUMATE

TeleSoft

WILEY

JOHN WILEY & SONS
NEW YORK « CHICHESTER < BRISBANE « TORONTO < SINGAPORE

Copyright © 1989, by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of

this work beyond that permitted by Sections

107 and 108 of the 1976 United States Copyright
Act without the permission of the copyright
owner is unlawful. Requests for permission

or further information should be addressed to
the Permissions Department, John Wiley & Sons.

Library of Congress Cataloging in Publication Data:

Shumate, Kenneth C.
Understanding Ada: with abstract data types. Ken Shumate. 2nd ed.

: cm.
Includes index.
ISBN 0-471-60520-4
1. Ada (Computer program language) 2. Abstract data types

(Computer science) I. Title.

QA76.73.A35548 1989

005.13’3—dc19 88-28743

CIP

Printed in the United States of America

1098765432

The names of all computer programs and computers included herein are registered
trademarks of their makers.

Printed and bound by Malloy Lithographing, Inc.

Preface

Ada is a computer programming language developed for the United States
Department of Defense (DoD). The objective of this book is to provide an
understanding of Ada. It is intended to be a first book on Ada for
programmers with experience in at least one other high-level language.

Understanding Ada takes a very simple approach to explaining the
language. At the same time, it covers all aspects of Ada needed to begin
programming effectively, and provides a foundation for the further study of
Ada and its use in constructing large software systems.

The following sections discuss the important features of the book, its
organization, basis for overall approach, and potential uses.

IMPORTANT FEATURES

There are four important features of this book:

* Graduated Introduction to the Language
* Abstract Data Types

* Introduction to Programming-in-the-Large
- Exercises

Graduated Introduction to the Language

Understanding Ada provides a graduated introduction to the language, using
Pascal as a basis. It is not expected that the reader know Pascal. Ada is
introduced at a Pascal-like level to provide an easy introduction for the

vi

PREFACE

Pascal concepts adapted for Ada (strong typing, enumeration types, records,
pointers, and so on), with which many readers will not be familiar. On the
other hand, readers who do know Pascal will be able to progress quickly
because they will be able to make comparisons and to understand Ada by
analogy with Pascal.

How does the book treat the gradual introduction? There is first of all a
short but complete overview of the entire language, followed by a discussion
of the use of Ada for developing large systems.

It then covers (1) Ada at about the complexity level of Pascal, (2)
additional aspects of Ada that go beyond Pascal but retain the nature of an
algorithmic language, and (3) the advanced features of Ada—why and how
Ada differs from other languages. The final technical chapter provides an
introduction to concurrency that is stronger than usual for a first book on
Ada.

Abstract Data Types

The second important feature is a strong emphasis on abstract data types.
The abstract data type is introduced in a very simple and uncomplicated
way, exactly like the use of abstract data types in Pascal. Improved methods
of using abstract data types are introduced as Ada’s features are explained.
The discussion is complementary; the explanation simultaneously shows
how to construct data abstractions properly by using Ada’s features, while
using this explanation to explain the Ada features themselves. By the end of
this book-long discussion, abstract data types are presented as secure,
reusable software components, for both sequential and concurrent programs.

Introduction to Programming-in-the-Large

The third feature is the introduction of some basic principles and methods
of using Ada to design large software systems—an introduction to program-
ming-in-the-large. This is intended to promote understanding of why Ada
contains numerous features to support software engineering principles. The
discussion of abstract data types supports this understanding, but the
primary mechanism for discussing programming-in-the-large is the use of

PREFACE

case studies. Each case study involves a problem statement called a software
requirements specification, top-level design, detailed design, and code. Ex-
planation and discussion are provided at each stage. Case studies are used
both as examples and as exercises. One of the case studies presents a
discussion of some important software engineering principles, and blends
these principles into an effective Ada-oriented design methodology.

Exercises

The preceding features are supported by, and well integrated with, the
fourth major feature of the book—an extensive set of solved exercises. The
best way to understand Ada is to solve problems. This book provides four
opportunities for you to do so.

First, there are small problems called examples that capture some
major feature of a chapter. They are solved and discussed as an integral part
of the text of the chapter.

Second, there are a set of what I call “Immediate Exercises” dealing
with abstract data types. They are denoted with a special “stop sign”
symbol, encouraging readers to stop and solve them before proceeding. The
immediately following text provides a solution and discussion. They are an
integral part of the text of the book and are the primary mechanism for
explaining abstract data types.

Third, there is an extensive set of end-of-chapter exercises. In addition
to the usual sort of exercises that illustrate and provide practice in using
individual language features, there is an on-going graduated set of problems
dealing with abstract data types.

Fourth and last are problems dealing with programming-in-the-large.
To reinforce the issue of using Ada for design, there are five small case
studies, each one building on the previous one. Solution of these case studies
calls not only for the use of Ada’s advanced features but also for the
application of data abstraction and other software engineering principles.

Solutions to odd-numbered end-of-chapter exercises and basic solu-
tions to the case studies are presented at the end of the book. The solutions
are more than simple code examples; they include discussion of language
features and are intended to be an important part of the book. The exercises
will increase the sophistication and degree of understanding of Ada.

vii

viii

PREFACE

Solutions to even-numbered end-of-chapter exercises, further elabora-
tion of the case studies, and more discussion of Ada features and how to use
them are presented in an available Instructor’s Manual.

ORGANIZATION OF THE BOOK

The book is organized into five parts and eight appendixes.

Part 1, Introduction, sets the foundation for the remainder of the book.
It provides some simple examples of Ada programs, presents overviews of
both the language itself and how it will influence the development of large
software systems, and discusses the history/rationale for Ada’s creation.

Part 2, Ada as Pascal, presents Ada as a modern programming lan-
guage using Pascal as a base. It does not attempt a subset of Ada, but
instead addresses those features of Ada that are comparable to Pascal in
terms of level of complexity. Part 2 introduces the construction of abstract
data types by using the features of Pascal.

Part 3, Ada as Ada, presents those features of Ada that are advances
over Pascal. Most importantly, Part 3 introduces the basic ideas of the
package. The discussion, on a chapter-by-chapter basis, parallels the presen-
tation in Part 2. The importance of the package in building data abstractions
is stressed.

Parts 2 and 3 present Ada as an algorithmic language, what is some-
times called a classical language. The features of Ada presented thus far do
not meet the requirements for building large real-time systems.

Part 4, Advanced Features, presents features of Ada that will allow it
to be used effectively for construction of large, long-lived, real-time systems.
It includes features for secure data abstractions, for building reusable
software components, for dealing with errors and other exceptional situa-
tions, and for dealing with concurrency and low-level access to hardware.

Part 5, All about Ada, provides an introduction to the Ada milieu. It is
nontechnical and could easily be read immediately following Chapter 2.

Appendixes A through E are portions of the Ada Language Reference
Manual and are intended to make the book self-sufficient. Appendixes F
through H are case studies and discussions that are intended to illustrate
programming-in-the-large, including the introduction of an Ada-oriented
design methodology. They are referenced in both the chapter text and the
exercises.

PREFACE

BASIS FOR FEATURES /ORGANIZATION

The features and organization of Understanding Ada are expressly intended
to meet two goals:

- Provide an easy introduction to the language.
- Provide a solid foundation for more advanced understanding of Ada.

The first goal is satisfied by the Graduated Introduction to the language.
Using “Ada as Pascal” to introduce Ada concepts was inspired by my early
experience teaching introductory Ada to engineers with a wide variety of
programming backgrounds, but often only Fortran. Teaching Ada “all at
once” failed to take advantage of their already sound base in conventional
languages and made Ada appear to be more complex than it is.

Some in the Ada community have advanced the idea that it is best to
learn Pascal before Ada. I do not think this is necessary. I prefer the
approach of teaching Ada at the same level of complexity of Pascal, and
then adding features—and their related software engineering principles— to
that base. This is a very natural approach, particularly since Pascal was the
base language for the design of Ada. This approach has been influenced by
my happy experiences teaching Pascal both as a first language and to
experienced programmers. Pascal is an effective language for teaching, as is
“Ada as Pascal.”

The second goal is satisfied by the emphasis on the features Abstract
Data Types and Introduction to Programming-in-the-Large. This emphasis is
based on my experience teaching advanced courses in Ada. In fact, Under-
standing Ada: With Abstract Data Types is the foundation for a three-course
sequence (each the equivalent of an academic semester):

- Introduction to Ada
*+ Concurrency in Ada
- Designing Large Real-Time Systems with Ada

This book is the text for the first course and is specifically intended and
desigaed to provide programmers with the necessary foundation for the
more advanced courses or other advanced reading in Ada.

Data abstraction is central to successful software design and is the
basis for maintainable systems and for reusable software components. It is

PREFACE

important to introduce the ideas early and to reinforce them often. It is
equally important to provide early introduction of examples of large pro-
grams. Solving more complex problems introduces the idea of software
design and illustrates correct use of Ada’s features. Even a first book on Ada
should point to its use for the construction of large systems.

Both goals are supported by the Exercises. The specific approach is
based on my belief and observation that the best way to learn Ada is to
solve problems. In fact, the primary method for teaching abstract data types
is the Immediate Exercise. This method challenges you to stop and think
about the issues presented—and write some code—before going on. The
solution /discussion then completes the exercise, illustrating how to specify
or implement the data abstraction and reinforcing the earlier discussion and
your grasp of the concept. This approach is derived from the way I teach
this material in a hands-on intensive course. At the point of the immediate
exercise, the students attempt a solution in the laboratory before we con-
tinue the discussion. This has proved effective.

The end-of-chapter exercises are more conventional, but are extensive,
particularly well integrated with the text discussion on abstract data types,
and are specifically intended to increase sophistication in understanding
Ada. The case study exercises continue to provide a foundation for the two
more advanced courses, which are largely oriented to a case-study approach
to teaching Ada advanced concepts.

The goals of providing an easy introduction to the language while
providing a solid foundation for advanced study—and at the same time
covering all aspects of Ada needed to begin programming effectively—are
somewhat contradictory. Meeting the goals calls for hard judgments of what
to include and what to defer. I've tried to balance simplicity with thorough-
ness in such a way that the material is easy to understand, provides a sound
basis for programming in Ada, and establishes the necessary foundation for
later courses or reading.

USE OF THE BOOK

This book is suitable for Ada-intensive courses, for corporate training
programs, or as a supplemental text for undergraduate courses that require
programming: simulation, software engineering, analysis of algorithms, and
so on. It has also been used as a text to accompany courses in compiler or

PREFACE

language design. It could also serve as the basic text for teaching students to
program, as the foundation for an academic course in the language Ada, or
simply be read by an individual engineer. The book is intended to be an easy
introduction to the language for the programmer who wants to begin
understanding Ada.

Ken Shumate

San Diego
May 1988

xi

Acknowledgements

FOR THE SECOND EDITION

Tom Burger prepared the end-of-chapter exercises. He is the author of the
instructor’s manual available to assist in teaching the course. Beyond that,
he has been important in helping me refine my ideas about Ada, and about
how to present the language to both introductory and advanced students.
The new examples and the exercises have been developed using the VAX
Ada Compilation System and the TeleSoft Second Generation VAX Ada
compiler. They have proven to be effective tools.

Thanks to G. Anderson, K. McCann, and students of both introduc-
tory and advanced Ada courses for helpful comments on the first edition
and for review of the new material for the second edition.

FOR THE FIRST EDITION

Many people made important contributions during the preparation of this
book. I particularly wish to thank those who read early versions of the
manuscript for understandability: G. Anderson, B. Colborn, R. Fritz,
J. Hooper, K. Nielsen, and R. Sauer. A number of reviewers made valuable
comments, as did associates at Hughes Aircraft Company. ROLM and Data
General were helpful in providing access to their Ada compiler. Special
thanks to M. Shumate, who editied the manuscript during its developement.
Maureen, John, Karen, and Kelly Shumate were supportive during the entire
project.

xiii

PART 1

£ o s

PART 2

00 =1 Oy th

o

11.
12.

PART 3

13.
14.
15.
16.
17.
18.
19.
20.

INTRODUCTION

Jumping Right In

History of Ada

Language Overview

Software Development Using Ada

ADA AS PASCAL

About Pascal

Data, Expressions, and Programs
Type Definitions and Strong Typing
Control Structures

Subprograms

Arrays

Records

Pointers

ADA AS ADA

About Ada

Data, Expressions, and Programs
Type Definitions and Strong Typing
Control Structures

Subprograms

Arrays

Records

Pointers

Contents

11
19
45

61

63
67
89
103
121
163
195
219

243

245
247
271
283
289
309
335
353

XV

xvi

CONTENTS

PART 4 ADVANCED FEATURES
21. Packages
22. Separate Compilation
23. Generics
24. Exceptions
25. Tasks
PART 5 ALL ABOUT ADA
26. The Ada Programming Support Environment
27. The Ada Compiler Validation Capability
28. Twelve Items to Remember
APPENDIXES
A. Glossary
B. Syntax Summary
C. Predefined Language Environment
D. Predefined Language Pragmas
E. Predefined Language Attributes
F. Layered Virtual Machine/Object-Oriented Design
G. A Taxonomy of Ada Packages
H. An Example Case Study on Ada Tasking

SOLUTIONS TO ODD-NUMBERED EXERCISES

INDEX

365

367
389
409
433
457

513

514
523
527

A-1

A-1

A-7
A-23
A-29
A-33
A-41
A-75
A-99

PART 1

INTRODUCTION

Ada is the new computer programming language specified by the United
States Department of Defense (DoD) for the programming of computers
embedded within larger systems. Computers internal to aircraft, ships,
radars, or command and control systems are used in different ways than in
business or data processing applications. Computers in such embedded
computer systems typically interface with human operators and external
devices in real time, as events are occurring. They read signals from sensors
and send commands to electrical and electromechanical devices. Commercial
systems such as process control and data communications have similiar
characteristics. Ada will eventually be the single language for programming
DoD embedded computer systems, will find similar use among the defense
establishments of allies of the United States, and is certain to have
widespread commercial use. In fact, the first delivered production Ada
software was a payroll and inventory system for a truck manufacturer.

Part 1, “Introduction,” presents some simple examples of Ada pro-
grams that show the form of the language, summarizes the history of Ada
development and its technical requirements, provides an overview of the
complete language, including its advanced features, and discusses how
software will be developed using Ada. This introduction sets the foundation
for the language-specific presentations of Parts 2, 3, and 4.

Part 1 also introduces, in Appendix F, an Ada design methodology
called Layered Virtual Machine /Object-Oriented Design. You should read
the appendix as an overview of how Ada parts “fit together” to design large
software systems. You can then read it in detail in conjunction with learning
Ada’s advanced features in Part 4.

Jumping Right In

OBJECTIVE: to provide some simple examples of Ada programs

1.1 FIRST ADA PROGRAM

Let’s begin by looking at a small Ada program whose net effect is to write
“Hello, World” on a standard output device.

with Text_IO; use Text_IO;
procedure Hello_World is
begin

Put ("Hello, World");
end Hello_World;

Hello__World is the name of the procedure, which is an executable block of
code. The executable part is delineated by begin and end; the procedure
itself is delineated by procedure Hello__World and end Hello__World. The
context clause “with Text__IO; use Text__I10;” provides access and visibil-
ity to input /output facilities, for example, the “Put.” We will use lowercase
boldface to indicate Ada reserved words that appear in the text of the book
other than examples of code.

INTRODUCTION

1.2 ANOTHER EXAMPLE

Here is a longer example, with comments. Note that “--” indicates that what
follows is a comment (-- This is a comment).

with Text_IO0; use Text_IO;
procedure Grades is
-- Grades computes the Sum and Maximum of
-- a set of grades
Grade, Sum, Maximum, Number_of_Students : Integer;
package I0 is new Integer_IO (Integer); use I0;
begin
Get (Number_of_Students);
Maximum := 0;
Sum := 0;
for Loop_Count in 1 .. Number_of_Students Lloop
Get (Grade);
Sum := Sum + Grade;
if Grade > Maximum then
Maximum := Grade;

end if;
end loop;
Put ("Maximum Grade Is : "); Put (Maximum); New_Line;
Put ("Sum of Grades Is : "); Put (Sum); New_Line;

end Grades;

As you can see by the examples, Ada is a high-level language with a
structure similar to other modern languages. (The “package 10 is new...”
gets us access to input/output for integer values.) Indeed, as will be shown
in Part 2, much of Ada is as easily understandable as Pascal, which was
designed to be a simple language to be used in teaching programming.

1.3 WHY ADA?

Ada goes beyond Pascal in its ability to define new types of data objects and
provides additional measures to help ensure safe programming practices.
Certain language features allow more programmer errors to be caught at
compile time rather than during run-time testing (or rather than not being
caught at all and turning up as bugs in the system). Even further, Ada
provides capabilities for concurrent programming, for error detection and

