OXFORD

Probability and Random Processes
GEOFFREY GRIMMETT and DAVID STIRZAKER
Third Edition




Probability and
Random Processes

GEOFFREY R. GRIMMETT
Statistical Laboratory, University of Cambridge

and

DAVID R. STIRZAKER
Mathematical Institute, University of Oxford

OXFORD

UNIVERSITY PRESS



OXFORD

UNIVERSITY PRESS
Great Clarendon Street, Oxford ox2 6pp

Oxford University Press is a department of the University of Oxford.
It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide in

Oxford New York

Athens Auckland Bangkok Bogotd Buenos Aires Cape Town

Chennai Dar es Salaam Delhi Florence Hong Kong Istanbul Karachi
Kolkata Kuala Lumpur Madrid Melbourne Mexico City Mumbai Nairobi
Paris Sz@o Paulo Shanghai Singapore Taipei Tokyo Toronto Warsaw

with associated companies in Berlin Ibadan

Oxford is a registered trade mark of Oxford University Press
in the UK and in certain other countries

Published in the United States
by Oxford University Press Inc., New York

© Geoffrey R. Grimmett and David R. Stirzaker 1982, 1992, 2001
The moral rights of the author have been asserted
Database right Oxford University Press (maker)

First edition 1982
Second edition 1992
Third edition 2001

All rights reserved. No part of this publication may be reproduced,

stored in a retrieval system, or transmitted, in any form or by any means,
without the prior permission in writing of Oxford University Press,

or as expressly permitted by law, or under terms agreed with the appropriate
reprographics rights organization. Enquiries concerning reproduction
outside the scope of the above should be sent to the Rights Department,
Oxford University Press, at the address above

You must not circulate this book in any other binding or cover
and you must impose this same condition on any acquirer

A catalogue record for this title is available from the British Library

Library of Congress Cataloging in Publication Data
Data available

ISBN 0 19 857223 9 [hardback]
ISBN 0 19 857222 0 [paperback]

10987654321
Typeset by the authors

Printed in Great Britain
on acid-free paper by Biddles Ltd, Guildford & King’s Lynn



Probability and Random Processes



TEXTS FROM OXFORD UNIVERSITY PRESS

Discrete Mathematics
Norman L. Biggs

Introduction to Algebra
Peter J. Cameron

Mathematical Logic: A Course with Exercises: Parts I and I1
René Cori and Daniel Lascar

Probability and Random Processes: Third Edition
Geoffrey R. Grimmett and David R. Stirzaker

One Thousand Exercises in Probability
Geoffrey R. Grimmett and David R. Stirzaker

Probability: An Introduction
Geoffrey Grimmett and Dominic Welsh

A First Course in Coding Theory
Raymond Hill

A Course in Group Theory
John F. Humphries

Invitation to Discrete Mathematics
Jiri Matousek and Jaroslav Nesetril

Visual Complex Analysis
H. A. Priestley

Elementary Geometry
John Roe

Geometry Ancient and Modern
John Silvester

Codes and Cryptography.
Dominic Welsh



Lastly, numbers are applicable even to such things as seem to be governed by no rule, I
mean such as depend on chance: the quantity of probability and proportion of it in any
two proposed cases being subject to calculation as much as anything else. Upon this
depend the principles of game. We find sharpers know enough of this to cheat some
men that would take it very ill to be thought bubbles; and one gamester exceeds another,
as he has a greater sagacity and readiness in calculating his probability to win or lose
in any particular case. To understand the theory of chance thoroughly, requires a great
knowledge of numbers, and a pretty competent one of Algebra.

John Arbuthnot
An essay on the usefulness of mathematical learning
25 November 1700

To this may be added, that some of the problems about chance having a great appearance
of simplicity, the mind is easily drawn into a belief, that their solution may be attained
by the mere strength of natural good sense; which generally proving otherwise, and the
mistakes occasioned thereby being not infrequent, it is presumed that a book of this
kind, which teaches to distinguish truth from what seems so nearly to resemble it, will
be looked on as a help to good reasoning.

Abraham de Moivre
The Doctrine of Chances
1717



Preface to the Third Edition

This book provides an extensive introduction to probability and random processes. It is
intended for those working in the many and varied applications of the subject as well as for
those studying more theoretical aspects. We hope it will be found suitable for mathematics
undergraduates at all levels, as well as for graduate students and others with interests in these
fields.

In particular, we aim:

e to give a rigorous introduction to probability theory while limiting the amount of measure
theory in the early chapters;

e to discuss the most important random processes in some depth, with many examples;

e toinclude various topics which are suitable for undergraduate courses, but are not routinely
taught;

e to impart to the beginner the flavour of more advanced work, thereby whetting the appetite
for more.

The ordering and numbering of material in this third edition has for the most part been
preserved from the second. However, a good many minor alterations and additions have been
made in the pursuit of clearer exposition. Furthermore, we have included new sections on
sampling and Markov chain Monte Carlo, coupling and its applications, geometrical prob-
ability, spatial Poisson processes, stochastic calculus and the It6 integral, It6’s formula and
applications, including the Black—Scholes formula, networks of queues, and renewal-reward
theorems and applications. In a mild manifestation of millennial mania, the number of exer-
cises and problems has been increased to exceed 1000. These are not merely drill exercises,
but complement and illustrate the text, or are entertaining, or (usually, we hope) both. In a
companion volume One Thousand Exercises in Probability (Oxford University Press, 2001),
we give worked solutions to almost all exercises and problems.

The basic layout of the book remains unchanged. Chapters 1-5 begin with the foundations
of probability theory, move through the elementary properties of random variables, and finish
with the weak law of large numbers and the central limit theorem; on route, the reader meets
random walks, branching processes, and characteristic functions. This material is suitable for
about two lecture courses at a moderately elementary level. The rest of the book is largely
concerned with random processes. Chapter 6 deals with Markov chains, treating discrete-
time chains in some detail (and including an easy proof of the ergodic theorem for chains
with countably infinite state spaces) and treating continuous-time chains largely by example.
Chapter 7 contains a general discussion of convergence, together with simple but rigorous



viii Preface to the Third Edition

accounts of the strong law of large numbers, and martingale convergence. Each of these two
chapters could be used as a basis for a lecture course. Chapters 8—13 are more fragmented and
provide suitable material for about five shorter lecture courses on: stationary processes and
ergodic theory; renewal processes; queues; martingales; diffusions and stochastic integration
with applications to finance.

We thank those who have read and commented upon sections of this and earlier editions,
and we make special mention of Dominic Welsh, Brian Davies, Tim Brown, Sean Collins,

Stephen Suen, Geoff Eagleson, Harry Reuter, David Green, and Bernard Silverman for their
contributions to the first edition.

Of great value in the preparation of the second and third editions were the detailed criticisms
of Michel Dekking, Frank den Hollander, Torgny Lindvall, and the suggestions of Alan Bain,
Erwin Bolthausen, Peter Clifford, Frank Kelly, Doug Kennedy, Colin McDiarmid, and Volker
Priebe. Richard Buxton has helped us with classical matters, and Andy Burbanks with the
design of the front cover, which depicts a favourite confluence of the authors.

This edition having been reset in its entirety, we would welcome help in thinning the errors
should any remain after the excellent TEX-ing of Sarah Shea-Simonds and Julia Blackwell.

Cambridge and Oxford G.
D.

G.
April 2001 S.

R.
R.
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1

Events and their probabilities

Summary. Any experiment involving randomness can be modelled as a prob-
ability space. Such a space comprises a set 2 of possible outcomes of the
experiment, a set ¥ of events, and a probability measure P. The definition and
basic properties of a probability space are explored, and the concepts of condi-
tional probability and independence are introduced. Many examples involving
modelling and calculation are included.

1.1 Introduction

Much of our life is based on the belief that the future is largely unpredictable. For example,
games of chance such as dice or roulette would have few adherents if their outcomes were
known in advance. We express this belief in chance behaviour by the use of words such as
‘random’ or ‘probability’, and we seek, by way of gaming and other experience, to assign
quantitative as well as qualitative meanings to such usages. Our main acquaintance with
statements about probability relies on a wealth of concepts, some more reasonable than others.
A mathematical theory of probability will incorporate those concepts of chance which are
expressed and implicit in common rational understanding. Such a theory will formalize these
concepts as a collection of axioms, which should lead directly to conclusions in agreement with
practical experimentation. This chapter contains the essential ingredients of this construction.

1.2 Events as sets

Many everyday statements take the form ‘the chance (or probability) of A is p’, where A is
some event (such as ‘the sun shining tomorrow’, ‘Cambridge winning the Boat Race’, ...)
and p is a number or adjective describing quantity (such as ‘one-eighth’, ‘low’, ...). The
occurrence or non-occurrence of A depends upon the chain of circumstances involved. This
chain is called an experiment or trial; the result of an experiment is called its outcome. In
general, we cannot predict with certainty the outcome of an experiment in advance of its
completion; we can only list the collection of possible outcomes.

(1) Definition. The set of all possible outcomes of an experiment is called the sample space
and is denoted by 2.



2 1.2 Events and their probabilities

(2) Example. A coin is tossed. There are two possible outcomes, heads (denoted by H) and
tails (denoted by T), so that 2 = {H, T}. We may be interested in the possible occurrences of
the following events:

(a) the outcome is a head;

(b) the outcome is either a head or a tail;

(c) the outcome is both a head and a tail (this seems very unlikely to occur);

(d) the outcome is not a head. o

(3) Example. A die is thrown once. There are six possible outcomes depending on which of
the numbers 1, 2, 3,4, 5, or 6 is uppermost. Thus 2 = {1, 2, 3, 4, 5, 6}. We may be interested
in the following events:

(a) the outcome is the number 1;

(b) the outcome is an even number;

(c) the outcome is even but does not exceed 3;

(d) the outcome is not even. ( J

We see immediately that each of the events of these examples can be specified as a subset
A of the appropriate sample space 2. In the first example they can be rewritten as

(a A={H}, (b) A={H}U(T},

(© A={H}N{T}, (d) A={H},

whilst those of the second example become

(@ A=({l}, (b) A=1{2,4,6},
(c) A=1{2,4,6}Nn{1,2,3}, @ A={24,6)".

The complement of a subset A of Q2 is denoted here and subsequently by A®; from now on,
subsets of 2 containing a single member, such as {H}, will usually be written without the
containing braces.

Henceforth we think of events as subsets of the sample space 2. Whenever A and B are
events in which we are interested, then we can reasonably concern ourselves also with the
events AUB, ANB,and A®, representing ‘A or B’,“A and B’, and ‘not A’ respectively. Events
A and B are called disjoint if their intersection is the empty set &; @ is called the impossible
event. The set € is called the certain event, since some member of 2 will certainly occur.

Thus events are subsets of €2, but need all the subsets of 2 be events? The answer is no, but
some of the reasons for this are too difficult to be discussed here. It suffices for us to think of
the collection of events as a subcollection ¥ of the set of all subsets of 2. This subcollection
should have certain properties in accordance with the earlier discussion:

(a) ifA,Be FthenAUBeFandANBe¥F,;
(b) if A € ¥ then A® € F;
(c) the empty set & belongs to F .
Any collection ¥ of subsets of Q2 which satisfies these three conditions is called a field. It
follows from the properties of a field ¥ that
n
if A, Az...,A,€F then | JAie#F;

i=1
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Typical notation Set jargon Probability jargon

Q Collection of objects Sample space

w Member of Q Elementary event, outcome

A Subset of Event that some outcome in A occurs
A Complement of A Event that no outcome in A occurs
ANB Intersection Both A and B

AUB Union Either A or B or both

A\ B Difference A, but not B

AAB Symmetric difference Either A or B, but not both

ACB Inclusion If A, then B

(o] Empty set Impossible event

Q Whole space Certain event

Table 1.1. The jargon of set theory and probability theory.

that is to say, ¥ is closed under finite unions and hence under finite intersections also (see
Problem (1.8.3)). This is fine when 2 is a finite set, but we require slightly more to deal with
the common situation when €2 is infinite, as the following example indicates.

(4) Example. A coin is tossed repeatedly until the first head turns up; we are concerned
with the number of tosses before this happens. The set of all possible outcomes is the set
Q = {w1, w, w3, ...}, where w; denotes the outcome when the first i — 1 tosses are tails
and the ith toss is a head. We may seek to assign a probability to the event A, that the first
head occurs after an even number of tosses, that is, A = {w;, w4, ws, . .. }. This is an infinite
countable union of members of 2 and we require that such a set belong to ¥ in order that we
can discuss its probability. (]

Thus we also require that the collection of events be closed under the operation of taking
countable unions. Any collection of subsets of 2 with these properties is called a o-field.

(5) Definition. A collection ¥ of subsets of €2 is called a o -field if it satisfies the following
conditions:

(a) o e F,;
(b) if Ay, Ap,... € Fthen| U2, A; € F;
(c) if A€ F then A°e F.

It follows from Problem (1.8.3) that o-fields are closed under the operation of taking
countable intersections. Here are some examples of o -fields.

(6) Example. The smallest o-field associated with 2 is the collection ¥ = {@, 2}. ®
(7) Example. If A is any subset of Q2 then ¥ = {@, A, A, Q} is a o-field. o

(8) Example. The power set of 2, which is written {0, 1}Q and contains all subsets of €2, is
obviously a o-field. For reasons beyond the scope of this book, when €2 is infinite, its power
set is too large a collection for probabilities to be assigned reasonably to all its members. @
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To recapitulate, with any experiment we may associate a pair (2, ¥), where 2 is the
set of all possible outcomes or elementary events and ¥ is a o-field of subsets of 2 which
contains all the events in whose occurrences we may be interested; henceforth, to call a set
A an event is equivalent to asserting that A belongs to the o-field in question. We usually
translate statements about combinations of events into set-theoretic jargon; for example, the
event that both A and B occur is written as A N B. Table 1.1 is a translation chart.

Exercises for Section 1.2

1. Let{A; :i € I} be acollection of sets. Prove ‘De Morgan’s Laws’{:
C C
(Ua) =N (Na) =Uas
i i i i

2. Let A and B belong to some o-field #. Show that ¥ contains the sets AN B, A\ B,and A A B.

3. A conventional knock-out tournament (such as that at Wimbledon) begins with 2" competitors
and has n rounds. There are no play-offs for the positions 2, 3, ..., 2" — 1, and the initial table of
draws is specified. Give a concise description of the sample space of all possible outcomes.

4. Let Fbe a o-field of subsets of 2 and suppose that B € #. Showthat § = {ANB: A € #}isa
o -field of subsets of B.

5.  Which of the following are identically true? For those that are not, say when they are true.
(a) AU(BNC)=(AUB)N(AUC);

b) ANBNC)=(ANB)NC;

() (AUB)NC=AU(BNC);

@ A\(BNC)=(A\B)U(A\O).

1.3 Probability

We wish to be able to discuss the likelihoods of the occurrences of events. Suppose that we
repeat an experiment a large number N of times, keeping the initial conditions as equal as
possible, and suppose that A is some event which may or may not occur on each repetition.
Our experience of most scientific experimentation is that the proportion of times that A occurs
settles down to some value as N becomes larger and larger; that is to say, writing N (A) for
the number of occurrences of A in the N trials, the ratio N(A)/N appears to converge to a
constant limit as N increases. We can think of the ultimate value of this ratio as being the
probability P(A) that A occurs on any particular trial¥; it may happen that the empirical ratio
does not behave in a coherent manner and our intuition fails us at this level, but we shall not
discuss this here. In practice, N may be taken to be large but finite, and the ratio N(A)/N
may be taken as an approximation to P(A). Clearly, the ratio is a number between zero and
one; if A = & then N(@) = 0 and the ratio is 0, whilst if A = Q then N(2) = N and the

TAugustus De Morgan is well known for having given the first clear statement of the principle of mathematical
induction. He applauded probability theory with the words: “The tendency of our study is to substitute the
satisfaction of mental exercise for the pernicious enjoyment of an immoral stimulus”.

1This superficial discussion of probabilities is inadequate in many ways; questioning readers may care to
discuss the philosophical and empirical aspects of the subject amongst themselves (see Appendix III).
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ratio is 1. Furthermore, suppose that A and B are two disjoint events, each of which may or
may not occur at each trial. Then

N(A U B) = N(A) + N(B)

and so the ratio N(A U B)/N is the sum of the two ratios N(A)/N and N(B)/N. We now
think of these ratios as representing the probabilities of the appropriate events. The above
relations become

P(AU B) =P(A) + P(B), P(@) =0, P(R2) =1.

This discussion suggests that the probability function P should be finitely additive, which is
to say that

n n
if Ay, A2, ..., A, are disjoint events, then P U Al = Z P(A;);

i=1 i=1

a glance at Example (1.2.4) suggests the more extensive property that P be countably additive,
in that the corresponding property should hold for countable collections A, Az, . .. of disjoint
events.

These relations are sufficient to specify the desirable properties of a probability function P
applied to the set of events. Any such assignment of likelihoods to the members of ¥ is called
a probability measure. Some individuals refer informally to IP as a ‘probability distribution’,
especially when the sample space is finite or countably infinite; this practice is best avoided

since the term ‘probability distribution’ is reserved for another purpose to be encountered in
Chapter 2.

A probability measure is a special example of what is called a measure on the pair (2, ).
A measure is a function u : ¥ — [0, 0o) satisfying (@) = 0 together with (b) above. A
measure y is a probability measure if @ (2) = 1.

We can associate a probability space (€2, ¥, P) with any experiment, and all questions
associated with the experiment can be reformulated in terms of this space. It may seem
natural to ask for the numerical value of the probability P(A) of some event A. The answer
to such a question must be contained in the description of the experiment in question. For
example, the assertion that a fair coin is tossed once is equivalent to saying that heads and
tails have an equal probability of occurring; actually, this is the definition of fairness.



