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Preface

This volume of survey papers reflects many of the topics addressed by the speak-
ers of the 2006 AMS-IMS-SIAM-sponsored Summer Research Conference “Discrete
and Computational Geometry—Twenty Years Later,” held from June 18 to June
22, 2006 at Snowbird, Utah. This was the third decennial conference on the same
theme.

The first, held at Santa Cruz in the summer of 1986, inaugurated the first
volume of the new journal Discrete & Computational Geometry, whose birth arose
from the increasing recognition that the old field of discrete geometry, which went
back more than a hundred years and which had experienced a huge growth in
the twentieth century, was intimately connected to the new field of computational
geometry that had emerged in the preceding decade. This connection was first man-
ifested when a few computational geometers found themselves working on some old
and new problems in discrete geometry, and at the same time a number of discrete
geometers became interested in problems arising in computational geometry. The
1986 conference was intended to introduce the leading researchers in both fields to
one another. As in every marriage, there was at first the tension between mutual
attraction and the wish to preserve one’s own identity. The marriage ultimately
proved a great success, however, as was evidenced by the rapid growth of this new
journal (going from initially publishing fewer than 400 pages per year to the present
1440), and by the fact that its rapidly increasing readership reflected the growing
interactions of the two fields.

The second SRC, held at Mount Holyoke in the summer of 1996, celebrated
the tenth birthday of the new field of discrete and computational geometry. The
researchers were no longer new to one another, but quite familiar after ten years
of working together. The currents of that time can be seen in the AMS volume
Advances in Discrete and Computational Geometry which emerged from that con-
ference.

The most recent meeting, in Snowbird, coincided with the publication of the
recent solution of the 400-year-old Kepler conjecture by Hales and Ferguson, which
was presented (essentially as an “extended abstract”) in the Annals of Mathematics,
and fully written up in Discrete & Computational Geometry. This proof combined
traditional mathematics and the use of the computer in new and surprising ways
much more intimately than in the 1969 solution of the four-color problem by Haken
and Appel.

The present volume reflects the current state of this by now almost “classi-
cal” field. The topics of some of the papers (those by Bérdny, Demaine et al.,
O’Rourke, Valtr, and Zong, for example) would have been recognized by many of
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the researchers prior to 1986, while others would not have been seen as belonging
to the subject at that time.

We would like to thank the authors for participating in this project, and the
many anonymous referees without whose help it would have foundered. It has been
a pleasure to help bring this volume to the public, and an honor to have been able
to work with the distinguished authors of the articles before you.

Jacob E. Goodman
Janos Pach
Richard Pollack
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Musings on Discrete Geometry and
“20 years of Discrete & Computational Geometry”

Branko Griinbaum

As DISCRETE & COMPUTATIONAL GEOMETRY (abbreviated to DCG in
the sequel) turns 20, due to the fortunate effect of my longevity I can contemplate
the development of Discrete Geometry over the last 50 years, and the role DCG
played in that development.

The early development of Discrete Geometry, and of Discrete Mathematics in
general, was fueled by the many easily stated unsolved problems that were circu-
lated in the 1950’s and 1960’s. Prominent among these were the problems that Hugo
Hadwiger regularly published in Elemente der Mathematik, as well as the many pa-
pers and talks by Paul Erdds that challenged the imagination of a generation of
young mathematicians. A collection of 50 “Poorly formulated unsolved problems
in combinatorial geometry” was put together in 1963 by Leo Moser. After 1977 his
brother, Willy Moser, together with Janos Pach (since 1986) have repeatedly ex-
panded and privately distributed the collection. These editions served as the basis
of the more survey-like recent book “Research Problems in Discrete Geometry” by
Brass, Moser, and Pach [4]. Another collection of unsolved problems was widely
circulated in the 1960’s in mimeographed form by Vic Klee [20] and led to a number
of papers; it was meant to form part of a joint project with P. Erdés, L. Fejes T6th
and H. Hadwiger, but this never materialized. Instead, Hadwiger collected and
expanded his problems proposed earlier in a booklet, coauthored with Hans De-
brunner [17]; English and Russian translations, both including additional material,
were prepared by V. Klee, and by S. S. Ryskov and I. M. Yaglom, respectively.

Over the recent years, Discrete Geometry—which originally consisted mainly of
the theory of packing, covering and tiling—expanded vastly to include many other
geometric topics, such as configurations of points, lines, pseudolines, planes, etc.,
oriented matroids, Helly-type results, the structure of polytopes, rigidity, linkages,
Erdés-type distance problems, tessellations, geometric graphs, combinatorial com-
plexity of geometric objects, geometric transversal theory, and many others. As
mentioned by W. Kuperberg [22] in his review of [4], the lines separating discrete
geometry from the theory of convex polytopes, combinatorics and graph theory
became blurred.

A long-running department in the American Mathematical Monthly promoted
unsolved problems, many of a Discrete Geometry nature. Similarly, some of the

©2008 American Mathematical Society



2 BRANKO GRUNBAUM

problems in a section of the journal Discrete Mathematics were of a Discrete Ge-
ometry nature. Another collection of Discrete Geometry problems that circulated
for many years was that of Harald Croft. It was expanded into a well-received
book [6] coauthored with K. J. Falconer and R. K. Guy. Vic Klee and Stan Wagon
published an interesting collection of solved and unsolved problems [21].

The availability of great computing power and computer graphics has had an
invigorating effect on many topics in Discrete Geometry, and has been wholeheart-
edly embraced by most practitioners. As with all new tools, new questions arose
concerning the computational difficulty of various questions. This led to many of
the advances featured in DCG.

Several developments can serve to illustrate the changed status of Discrete
Geometry and Discrete Mathematics in general. One is the almost unimaginable
deepening of the mathematics involved. Whereas earlier publications can be said to
present the easy pickings in the fields they cover, the tendency of the more recent
works is to tease out the finer and harder results. Many of the latter require very
careful estimates and ingenious constructions.

In many branches of mathematics the past few decades have seen the solution
of old problems that have stymied researchers for decades or longer. In the theory
of convex polytopes, some 35 years ago came the almost simultaneous proofs of the
upper bound conjecture by Peter McMullen [26], and of the lower bound conjecture
by David Barnette [2], [3]. These advances served as the starting point for the deep
and detailed study of various aspects of convex polytopes, many in DCG. But these
developments have been in a certain sense very simple compared to other advances
in Discrete Geometry and related fields. I have in mind the proof of the four-color
theorem by Appel and Haken [1], and of the Kepler conjecture by Hales [18]. In
both cases, the degree of complexity was such that reliance on a very extensive and
sophisticated computational component appears unavoidable; as a consequence,
checking the proofs has become a very major undertaking, with only few people
having the resources and the inclination to verify all details.

However, it should also be noted that in some of the widely publicized advances
in other fields (Andrew Wiles’ solution of the Fermat problem, Grigory Perelman’s
work on Poincaré conjecture) the verification has become entangled in difficulties
due not to the use of computers but because of extremely advanced and specialized
results from a variety of other fields—to such an extent that even collectives of
referees have been stumped.

Let me turn now to other important—even though less spectacular—advances
in Discrete Geometry concerning topics with which I am personally more involved.
It will be noted that this explicitly excludes a large part of the works published
in DCG and devoted to various other aspect of Discrete Geometry, and to all of
Computational Geometry, with which I am not sufficiently familiar.

The investigation of Venn diagrams was once considered as ending in the three
circles made popular in very basic math courses. It has since blossomed into a very
sophisticated geometric discipline, with connections to group theory, lattice theory
and other branches. I flatter myself that this development started with my papers
[10] and [11], see Figures 1 and 2. It is amusing to note that [10] was rejected by
both the American Mathematical Monthly and the Mathematical Gazette, before
being accepted by the Mathematics Magazine and then earning the Allendoerfer
award of the Mathematical Association of America. Recent years have brought
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FIGURE 1 FIGURE 2

spectacular advances in the understanding of Venn diagrams, while still leaving
many unsolved problems that are easy to formulate and understand. The extent
of the development and changed status of the topic is best seen in the detailed
survey given by Frank Ruskey [30] and the recent paper [29], the lead article in the
December 2006 issue of the Notices of the AMS. But the outstanding question in
the topic—whether simple symmetric Venn diagrams with 11 or more sets exist—is
still open.

Nl
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FIGURE 3 FIGURE 4

The theory of configurations of points and lines in the plane was somnolent for
almost a century, despite the book by Levi [23], the chapter on configurations in the
popular book by Hilbert and Cohn-Vossen [19], and several papers by Coxeter (in
particular, [5]). More recently, the study of configurations took off due to several
developments. On the one hand, the first ever diagrams of (n4) configurations were
produced [15], see Figure 3 (see also Figure 4). On the other hand, T. Pisanski and
M. Boben recently found serious errors in basic results concerning the enumeration
and construction of (n3) configurations; these results were supposed to have been
established long ago—in the nineteenth century—by V. Martinetti [24] and Steinitz
[31]. Also, applications of computer algebra yielded the fact that for n < 12 all
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configurations possible in the real Euclidean plane are possible in the rational plane
as well. Each of these directions led to many new investigations and unexpected
results, as well as lots of open questions; a recent survey with detailed description
of results and problems is [13].

.

R

FIGURE 5

The theory of arrangements of lines in the plane, and more generally of hy-
perplanes in higher dimensions, went far beyond the simple questions considered
since the times of Jacob Steiner nearly two centuries ago. Many extremal and other
problems have been considered, and relations to algebraic geometry and other fields
investigated. Among other open questions is the problem of determining all sim-
plicial arrangements, still unsolved even in the plane; see Figure 5. Several recent
surveys of arrangements (in the plane, and in higher dimensions) are available, to-
gether with indications of their use in various fields and many open problems. In
particular, we should mention [7], Chapter 5 of [8], and parts of [28], [25] and [4].

The theory of tilings, in particular in the plane, has roots going to antiquity.
More recently it has become quite popular, in part because of its relation to aperi-
odic and quasiperiodic tilings. Starting with [16], this has engendered many books
and articles—several in DCG. Many of the publications are related to physical
aspects.

(c)

FIGURE 6
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The theory of not-necessarily convex polyhedra in the Euclidean 3-space has
also had significant advances. This topic stagnated since early in the twentieth cen-
tury, and was revived towards its end. The renewed interest led to the consideration
of several specific classes of such polyhedra, but more importantly it underlined the
need for a consistent theory of polyhedra more general than the convex ones. This
has now been developed (see [12], and Figure 6). It turned out to essentially co-
incide with the 3-dimensional case of the “abstract polytopes” of McMullen and
Schulte [27]. However, the geometric reach of this work on abstract polytopes is
limited by the insistence on what the authors term “faithful representations”.

One additional new phenomenon is the widespread collaboration by multiple
authors. While joint publications by two authors have long been an accepted feature
in journals (as well as for books), the recent years have seen a surge in papers
with three, four, or more authors. This is in part attributable to the ease of
communication made possible by email and other electronic means. The possibility
of quick interchange led to a much faster spread of ideas. In turn, this led to the
many new approaches evident in the papers published by DCG and elsewhere.

Another new development that comes from the maturing of digital technology
is the increased accessibility of a great portion of the literature. In many large
research institutions (such as my home university) people enjoy almost unlimited
access, free to the individual, to digital publications and repositories. In contrast,
many of the workers at smaller institutions are not as fortunate. It is a sad fact
that even the pricing of Mathematical Reviews (or MatSciNet) is imposing a heavy
burden on people in such institutions. A similar inequality existed earlier, through
differences in library holdings of various institutions. But one might have hoped
that this would disappear, or at least be mitigated, in the digital age.

On the debit side of the proliferation of joint authorships and of papers in
general one has to keep in mind the tremendous pressure on young researchers to
come up with a long list of publications at the time of promotion and /or tenure,
and even of primary employment.

In the 1950’s there were no journals devoted to Discrete Mathematics. In fact,
most journals were of a general character. The acceptable (and published) papers
in this field were, on the whole, at a much lower level of technical complication and
conceptual sophistication than has become the rule in later years.

As a side-effect of the increasing specialization of publications (and of math-
ematicians) several new journals were started, devoted mainly to Discrete Mathe-
matics and some more particularly to Discrete Geometry. Unfortunately, this was
accompanied by takeover of Enseignement Mathématique and of Geometriae Ded-
icata by editorial boards or publishers that were ignoring the original aims of the
journals. The same is true for many conferences, such as the “Coxeter Legacy”
where more than a half of the papers and presentations were less geometric than
what Coxeter would have appreciated.

After surveying some of the directions of Discrete Geometry, a question that
arises naturally is: Where is Discrete Geometry going? The only honest answer I
can give is that I do not know. It is extremely hard to handicap the many emerging
directions of investigation. For me, this uncertainty is increased by the very reason
that led to the writing of this article. The longevity that gives perspective on
the past implies, as a corollary, reaching old age. This, in turn, means a poor
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understanding of novel ideas and a regrettable tendency to see the future as a
continuation in the tracks made in the past.

Finally, what about the future of DCG?

Excellent as the record of this journal has proved itself over the last two decades,
I would venture to make three suggestions.

One is the active recruitment and solicitation of surveys of the different direc-
tions in which Discrete Geometry is actively developing. These should not be sur-
veys written for popular consumption—readers unfamiliar with discrete geometry
could hardly be expected to read them. Instead, the surveys should be authoritative
accounts meant for generally knowledgeable people not specializing in a particular
subfield.

Another is motivated by the availability of online versions of the published pa-
pers; this is certainly a step in the right direction. But the utilization of web-based
possibilities could be enhanced by having a parallel online repository of detailed
accounts of which only short reports would appear in the printed journal. This
could be used for extensive tables or collections of diagrams, of accounts of proofs
the length of which makes them unsuitable for the printed version. It could also be
used for the surveys mentioned above, which in this mode could be kept up-to-date
much more easily than in print.

Lastly, it is a fact that besides the academically oriented activities reflected
in journals and meetings, there is a “parallel universe” of people communicating
through the web, at a variety of levels of knowledge, but with a very high degree
of enthusiasm. Many parts of the communications happening there are best left
alone—because they reflect ignorance of well-known facts. However, the enthusiasm
and energy invested in these web pages often contain genuinely new knowledge and
interesting ideas and problems. It would be worthwhile to try to establish a con-
nection with this universe, and make the interesting parts available to the academic
community in the pages of DISCRETE & COMPUTATIONAL GEOMETRY.

* * * * *

The good fortune aspect of my long life was amplified by the acquaintance—and
in several cases friendship—with many great mathematicians of the third quarter of
the twentieth century, that had a more than passing interest in Discrete Geometry.
This list would include H. Buseman, H. S. M. Coxeter, L. Danzer, A. Dvoretzky, P.
Erdés, L. Fejes Téth, W. Fenchel, H. Hadwiger, V. Klee, L. Moser, T. S. Motzkin,
H. Rademacher, G. Ringel, I. J. Schoenberg, G. C. Shephard, and others, as well
as many younger people that are still actively producing research mathematics.
I'll never cease being grateful for their insights, inspirations, comments, and other
kinds of support.
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State of the Union (of Geometric Objects)

Pankaj K. Agarwal, Janos Pach, and Micha Sharir

ABSTRACT. Let € be a set of geometric objects in R®. The combinatorial complexity
of the union of C is the total number of faces of all dimensions on its boundary. We
survey the known upper bounds on the complexity of the union of n geometric objects
satisfying various natural conditions. These bounds play a central role in the analysis of
many geometric algorithms, and the techniques used to attain these bounds are interesting
in their own right.

1. Introduction

Let C = {C1,...,C,} be a set of n geometric objects, such as disks or convex poly-
gons in the plane, or balls, cylinders, or convex polyhedra in three and higher dimensions.
Let U(C) = [J;—, C; denote the union of the objects in C. The combinatorial complexity
(or complexity for brevity) of U(C) is the number of faces of all dimensions on its bound-
ary; see below for a formal definition. Several combinatorial and algorithmic problems
in a wide range of applications, including linear programming, robotics, solid modeling,
molecular modeling, and geographic information systems, can be formulated as problems
that seek to calibrate the complexity of the union of a set of objects, or to compute their
union. We begin by reviewing some of these applications.

Linear programming. Given a family € = {C;,...,C,} of n halfspaces in R?, we
want to maximize a linear function over ﬂ?zl C;. Since the maximum (if it exists) is
achieved at the boundary of the common intersection, the problem can be reformulated
as minimizing a linear function over the boundary of |J!_; C;, where C; is the (closed)
halfspace complementary to C;; see Figure 1. The worst-case running time of the simplex
algorithm, as well as many other naive solutions to linear programming, is proportional to
the total number of vertices of U(C). According to McMullen’s Upper Bound Theorem
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