CUBGTRAE) S
745 RGN
TS

LA

T







COMPUTER PROGRAM DISCLAIMER

Neither the publisher or the author warrants the included programs to execute other than the
displayed output if the programs and data are correctly entered into a computer. Any use of the
programs to solve problems other than those displayed is the sole responsibility of the user as to
whether the output is correct or is correctly interpreted.

This book was set in Times Roman by Santype-Byrd.

The editors were Julienne V. Brown and Susan Hazlett;
the production supervisor was Leroy A. Young.

New drawings were done by J & R Services, Inc.

The cover was designed by Charles A. Carson;

the cover photograph was taken by Robert Capece.

R. R. Donnelley & Sons Company was printer and binder.

FOUNDATION ANALYSIS AND DESIGN

Copyright © 1982, 1977, 1968 by McGraw-Hill, Inc. All rights reserved. Printed in the
United States of America. Except as permitted under the United States Copyright Act of
1976, no part of this publication may be reproduced or distributed in any form or by any
means, or stored in a data base or retrieval system, without the prior written permissior of
the publisher.

234567890 DODO 898765432

ISBN 0-07-00k770-48

Library of Congress Cataloging in Publication Data

\B\(?wles, Joseph E.
“\Foundation analysis and design.

BiB]ig\graphy: p.
Includes indexes. ’
1. Foundtjons. 2. Soil mechanics. I. Title.
TA775.B63 1982 624.1's  81-13649
ISBN 0-07-006770-8 AACR2



PREFACE

This edition is the latest in the continuing process of producing -an up-to-date
compendium of methods and procedures for the analysis and design of founda-
tions. As in the earlier editions the primary focus is on interfacing structural
elements with the underlying soil. This is where the major focus of foundation
engineering lies in both the author’s opinion and that of many others. Engineer-
ing of dams, fills, and embankments, and flow of water in soil masses may more
properly fall under the general category of geotechnical engineering. In some
cases the latter considerations. may be major factors in designing or constructing
a foundation; therefore, some background material on several of these topics has
been included.

Most engineers now recognize that it is not possible or very practical to
identify foundation engineering as soil mechanics/properties with structural en-
gineers designing the foundation elements. A foundation engineer must be versed
in both the geotechnical aspects of soils as well as the structural behavior pro-
duced by the often complex foundation-soil interaction. The latter statement
reflects the general design philosophy contained in this text.

I have undertaken a fairly extensive revision; however, none of the chapter
titles have been changed and in most cases the section headings have been -
retained. Chapters 2, 8, 9, and 16 have been almost totally rewritten, with very
substantial rewriting undertaken in Chaps. 3, 4, 10, and 11. This was done to
produce a more logical sequencing of topics and to include new methodology
which was in transition when the second edition was being rewritten. The ma-
terial is about 80 percent SI to reflect both the general trend in textbooks and the
anticipated status of SI for most of the useful life of the book.

In many cases there is no “unique” design equation/methodology and one
ar more of several alternatives tends to be preferred by certain engineers or in
8eographical areas. I have attempted to present those alternatives where they
Seem to be widely enough used to warrant the text space. Where it was practical,
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Xiv PREFACE

examples are analyzed using one or more of the alternatives so the reader obtains
both familarity and an opinion about the procedure. In several examples a “feel”
of a probable answer is produced by use of the alternatives—a common engineer-
ing office practice where the input data are uncertain—either as a direct com-
putation or as an average from the several alternatives. I have attempted to
include realistic example (and home) problems for the reader, with the examples
being somewhat less edited. About 50 percent of the home problems are new, and
more answers are included than in the earlier editions.

Several methods such as the footing on slope, grid analysis of mats, and the
sheet and lateral pile solutions using the finite-element method have been com-
pared via examples with the solutions of others or with alternative methods. This
has been done to illustrate that these new methods are adequate. In passing it
should be noted that the finite-element solution contained herein for beams, sheet
piles, and lateral piles is extremely widely used. It is the author’s opinion that the
simplest solution which produces a satisfactory and economical design is pre-
ferred. Solutions which require esoteric mathematics to produce miniscule com-
putational refinement in a mathematical model based on soil data which are
uncertain at best are not very practical. Magny solutions of this type do not get
further than the pages of a technical journal and others soon disappear from
engineering practice after a short time.

I have included about 560 references so that almost every topic can be
researched in depth. I have tried to avoid using obscure references which could be
obtained only with great difficulty by the average user. Most worthwhile material
eventually gets published in some form by ASCE, ASTM, TRB, CGJ, at a spe-
cialty conference, or in the proceedings of the ICSMFE, which are not very
difficult to access. I have retained the use of the list of publication abbreviations
(above included) at the beginning of the bibliography to reduce its size. It is
hoped that no significant work has been omitted; however, in the interest of
space, not all the work on a given topic is cited. Generally the most recent or
those works with the best bibliography coverage were included. I hope also that I
have not offended the junior authors of coauthored references by the use of “et
al.” when there are more than two authors.

I wish to express appreciation to the many users both in the United States
and abroad who have written or called with comments or constructive criticism
or simply to make inquiry about a procedure. I should also like to thank those
who took part in the McGraw-Hill user survey to provide input for this revision
and include: Jack Bakos of Youngstown State University; William Baron of
Clemson University; William Gotolski of Pennsylvama State University; and
Roy V. Snedden of the University of Nebraska. I would also like to thank the

4l manuscript reviewer William Baron of Clemson University.

Finally 1 should like to acknowledge the considerable contribution of my
wife Faye, #ho helped as usual with the typing and the myriad other operations
to produce the manuscript.

Joseph E. Bowles
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CHAPTER

"ONE
INTRODUCTION

- 1-1 FOUNDATIONS—DEFINITION AND PURPOSE

All structures designed to be supported by the earth, including buildings, bridges,
earth fills, and earth, earth and rock, and concrete dams, consist of two parts.
These are the superstructure, or upper part, and the substructure element which
interfaces the superstructure and supporting ground. In the case of earth fills and
dams, there is often not a clear line of demarcation between the superstructure
and substructure. The foundation can be defined as the substructure and that
adjacent zone of soil and/or rock which will be affected by both the substructure
element and its loads. )

The foundation engineer is that person who by reason of experience and
training can produce solutions for design problems involving this part of the
engineered system. In this context, foundation engineering can be defined as the
science and art of applying the principles of soil and structural mechanics toge-
ther with engineering judgment (the “art™) to solve the interfacing problem. The
foundation engineer is concerned directly with the structural members which
affect the transfer of load from the superstructure to the soil such that the
resulting soil stability and estimated deformations are tolerable. Since the design
geometry and location of the substructure element often have an effect on how
the soil responds, the foundation engineer must be reasonably versed in structural
design.

A number of practical considerations are a part of the engineering of a
foundation:

1. Viswal integration of geologic evidence at a site with any field or laboratory
test id.ta.
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2. Establishing of an adequate field exploration and laboratory testing program.

3. Design of the substructure elements so that they can be built—and as econ-
omically as possible.

4. Appreciation of practical construction methods and of likely-to-be-obtaihed
construction tolerances. Stipulation of very close tolerances can have an enor-
mous effect on the foundation costs.

These several items are not directly quantifiable and thus require a considerable
application of common sense.

A thorough understanding of the principles of soil mechanics in terms of
stability, deformations, and water flow is a necessary ingredient to the successful
practice of foundation engineering. Of nearly equal importance is an undér-
standing of the geological processes involved in the formation of soil masses. It is
now recognized that both soil stability and deformation are dependent ofi the
stress history of the mass. It has been common until recently to associate féunda-
tion engineering solely with soil mechanics concerns, leaving the interficing el-
ements to the structural (or other) deSIgner Current trends are to recognize that
foundation engineering is a systems problem and cannot be nicely com-
partmentalized as some persons would prefer. Readers may determine the validity
of this statement as they progress through the text.

The science of soil mechanics and its relationship to geological processes has
progressed considerabiy over the past fifty years. However, because of the natural
variability of soil and the resulting problems associated with te-ting, which will
be elaborated upon in Chap. 3, the design of a foundation still depends to a large
degree upon “art,” or the application of engineering judgment. A subset of this
application is the assessment of the tolerable risk associated with the foundation.

The primary focus of this text will be on analysis and design of the interfac-
ing elements for buildings and retaining structures and those soil mechanics
principles particularly applicable to these elements. These interfacing elements
include both near surface members such as footings and mats and deep elements
such as piles and caissons. Retaining structures of concrete (commonly termed
retaining walls) and metal (as sheetpiling) are considered in later chapters. foil
mechanics principles include both stability, including soil water effects, and delor-
mation analyses. Soil stability can often be enhanced by various improvement
techniques, the most common being compaction, and several of the more papular
-of these methods will be briefly considered in Chap. 6.

1-2 FOUNDATION CLASSIFICATIONS

Foundations for structures such as buildings, from the smallest residential to the
tallest high-rise, and bridges are for the purpose of transmitting the super-
structure loads. These loads come from column-type members with stress inten-
sities ranging from perhaps 140 mPa for steel to 10 mPa for concrete to the
supporting capacity of the soil, which is seldom over 500 kPa but more often on
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the order of 200 to 250 kPa. The reader can readily note that this interface
connects materials whose differences in useful engineering strength can vary by a
factor of several hundred. The transmission of these large superstructure loads to
the soil may be by use of:

1.

Shallow foundations—termed footings, spread footings, or mats. Foundation
depth is generally D < B (see Chap. 4).

2. Deep foundations—piles or caissons with-P > 4 to 5B (see Chaps. 16 to 19).

[

Any structure used to retain a soil or similar mass such as grain, coal, or ore

in a geometric shape other than that occurring naturally under the influence of
gravity is a retaining structure. Any foundation not classed as shallow, deep, or a
retaining structure may be termed a special foundation.

(=

Typical foundation types are:

. Foundations for buildings (either shallow or deep)
. Foundations for smekestacks, radio and television towers, bridge piers, indus-

trial equipment, etc. (either shallow or deep)

. Foundations for port or marine structures (may be shallow or deep and w1th

retaining structures extensively used)

. Foundations for rotating, reciprocating, and impact machinery, and for tur-

bines, generators, etc. (either shallow or deep and may require vibration con-
trol)

. Foundation elements to support excavations or retain earth masses as for

bridge abutments and piers, or rétain grain, ore, coal, etc. (retaining walls or
sheet-pile structures)

Foundations for buildings are ‘e;tremely numerous; foundations for the sev-

eral other types of superstructures are constructed in somewhat lesser numbers.

1-3 FOUNDATION SITE AND SYSTEM ECONOMICS

A building foundation must be adequate if the structure is to perform satisfac-
torily and be safe for océupancy. Other foundations must be adequate to perform
their intefided functions in a satisfactory and safe manner; however, buildings
usually have more stﬂngent criteria for safety and performance than other
structures-notable exceptions being nuclear-plant facilities, turbines for power
generatmn, and certain types of radio-antenna equipment. Foundations for nu-
clear plants require extremely rigid des:gn/performance criteria for safety reasons.

The other foundations support extremely expensive machinery which is often
very sensitive to small soil deformations.

More recently, and after loss of life from several avoidable failures, dam»

- designs where soil is the principal construction material are being more carefully
made. One might note that more principles of soil mechanics and geology apply
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to earth dams than to the majority of foundation engineering problems. In addi-
tion to the stringent criteria of the superstructure, instability and water flow
through the base soil are serious considerations. A further area of concern is the
inevitable deformation of the base soil and subsidence in the superstructure (dam
fill material). Careful attention to the occurrence of the latter deformations can
allow the designer to avoid a base crack in the dam and the resulting piping
failure, or a crest crack and the associated overtopping failure.

Almost any reasonable structure can be built and safely supported if there is
unlimited financing. Unfortunately, in the real situation this is seldom, if ever, the
case, and the foundation engineer has the dilemma of making a decision under
much less than the ideal condition. Also, even though the mistake may be buried,
the results from the error are not and can show up relatively soon—and probably
before any statute of limitations expires. There are reported cases where the
foundation defects (such as cracked walls or broken mechanical fixtures) have
shown up years later—also cases where the defects have shown up either during
construction of the superstructure or immediately thereafter.

Since the substructure is buried, or is beneath the superstructure, in such a
configuration that access wilt be difficult should foundation inadequacies develop
after the superstructure is in place, it is common practice to be conservative. A
one or two percent overdesign in these areas produces a larger potential invest-
ment return than in the superstructure.

The designer is always faced with the question of what constitutes a safe,
economical design while simultaneously contending with the inevitable natural
soil heterogeneity at a site. Nowadays that problem may be compounded by land
scarcity requiring reclamation of areas which have been used as sanitary landfills,
garbage dumps, or even hazardous waste disposal areas. Still another com-
plicating factor is that the act of construction can alter the soil properties con-
siderably from those used in the initial analyses/design of the foundation. These
factors result in foundation design becoming so subjective and difficult to quan-
tify that two design firms might come up with completely different designs that
would perform equally satisfactory. Cost would likely be the distinguishing fea-
ture for the preferred design.

This problem and the widely differing solutions would depend, for example,
on the following:

1. What constitutes satisfactory and tolerable settlement; how much extra could,
or should, be spent to reduce estimated settlements from say 30 to 15 mm ?

2. Has the client been willing to authorize an adequate soil exploration pro-
gram ? What kind of soil variability did the soil borings indicate ? Would
additional borings actually improve the foundation recommendations ?

3. Can the building be supported by the soil using '

~ a. Spread footings—least cost.

b. Mats—intermediate in cost.
c. Piles or caissons—several\times the cost of spread footings.
4. What are the consequences of a foundation failure in terms of public safety ?
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What is the likelihood of a lawsuit if the foundation does not perform ad-
equately ?

5. Is sufficient money available for the foundation ? It is not unheard of that the
foundation alone would cost so much the project is not economically feasible.
It may be necessary to abandon the site in favor of one where foundation costs
are affordable.

6. What is the ability of the local construction force ? It is hardly sensible to
design an elaborate foundation if no one can build it, or if it is so different in
design that the contractor includes a large “uncertainty” factor in the bid.

7. What is the engineering ability of the foundation engineer ? While this factor is
listed last, this is not of least importance in economical design. Obviously
engineers have different levels of capability just as in other professions (law-
yers, doctors, professors, etc.) and in the trades such as carpenters, electricians,
and painters.

If the foundation fails because of any cost shaving (in reality implicitly ac-
cepting a higher risk), the client tends to quickly lose appreciation for the tempor-
ary financial benefit which accrued. At this point, facing heavy damages and/or a
lawsuit, the client is probably in the poorest mental state of all the involved
parties. Thus, one should always bear in mind that absolute dollar economics
may not produce good foundation engineering.

The foundation engineer must look at the entire system: the building pur-
pose, probable service-life loading, type of framing, soil profile, construction me-
thods, and construction costs to arrive at a design that is consistent with the
client/owner’s needs and does not excessively degrade the environment. This must
be done with a safety factor which produces a tolerable risk level to both the
public and the owner.

Considering these several areas of uncertainty, it follows that risk and lia-
bility insurance for persons engaged in foundation engineering is very costly. In
attempts to reduce these costs as well as produce a design which could be
obtained from several engineering firms (i.e,, a “consensus” design) there is active
discussion (and the practice has already been undertaken in several areas) of
having the foundation engineer submit the proposed design to a board of quali-
fied engineers for a “peer review.”

1-4 GENERAL REQUIREMENTS OF FOUNDATIONS

A foundation must be capable of satisfying several stability and deformation
requirements such as:

1. Depth must be adequate to avoid lateral expulsion of material from beneath
the foundation—particularly for footings and mats.

2. Depth must be below the zone of seasonal volume changes caused by freezing,
thawing, and plant growth.



