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PREFACE

The aim of this volume is to collect and present critically evaluated original data, both published
and unpublished, that are relevant to laser research and development. The laser is close to its eleventh
birthday. It has experienced a rapid growth, both in numbers and in complexity. Lasers of different
types, frequencies, powers and energies have proliferated to such a degree that scientists are even be-
coming specialized in restricted fields within the general field of lasers.

The theory of the generation and control of coherent radiation is covered in various articles and
texts. The experimental data, however, are being extended and enlarged much faster than the theory.
To provide convenient access to this rapidly expanding volume of information is the goal of this hand-
book. The textual material is, in general, only that necessary to explain the data.

The data are the results of many different experimental arrangements. There has been little stan-
dardization between various laboratories in certain measurements such as threshold or efficiency. With
this in mind, an important part of this handbook is the references to the original work, which should be
- consulted for details of how the various measurements were made. This referencing will become of less
importance in later editions when there should be more standardization of measurement techniques.

The listings of the laser transitions for this first edition represent data available in late summer of
1970. There will undoubtedly be important additional data available between that date and the publica-
tion date, but this is an inevitable consequence of publishing in a current field of research.

The selection of data on related optical elements is not intended to be inclusive, but is meant to be a
representative selection of some of the more useful items of considerable current interest. Both the
American Institute of Physics and the Optical Society of America are currently preparing revised
Handbooks, which will contain much more complete and detailed tabulations of topics covered periph-
erally in this handbook. :

. This handbook is intended for the use of active researchers in the field of lasers, and as such needs
comments, criticisms and suggestions from these researchers if future editions are to be of maximum
value. We welcome your cooperation in helping us to correct any errors or omissions.

The advisors to this handbook have contributed considerable time and effort toward the compila-
tion of the data presented. That this Handbook could appear at all is due to their unstinting co-operation
in collecting, collating, evaluating and referencing the data, in addition to their continuing normal
scientific responsibilities.

I am personally indebted to both the David Sarnoff Research Center at Princeton, New Jersey, and
Holobeam, Inc. at Paramus, New Jersey, for their cooperation during the compilation of this volume.
I also wish to thank Mrs. Mary Lou Wu of the Chemical Rubber Company for her continuing en-
thusiasm and technical expertise in the editing of the book.

Hopewell, New Jersey ROBERT J. PRESSLEY
September 1, 1971
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'‘Ocular Hazards

A. M. Clarke

Department of Biophysics
Medical College of Virginia
Virginia Commonwealth University
Richmond, Virginia 23219

Ocular hazards in the vicinity of laser devices include not only the laser itself, but the optical pumps
used for excitation, the off-axis spontaneous radiation from gas discharge tubes, and occasionally the
blackbody radiation of absorbers used to stop extremely intense beams. Geometrical considerations
make the latter two cases a lesser hazard, but obviously do not remove them from inclusion in a safety
protocol.

Ultraviolet devices of all types must be carefully controlled, as exposure of the cornea to even
relatively low levels of irradiation at wavelengths less than 320 nm produces * sunburn > of the cornea,
called “ photophthalmia.” Because a source in this region is not visible, has a cumulative effect, and the
extremely dehabilitating “ blepharospasm,” or “sand in the eye” reaction to the corneal epithelium
sloughing off and exposing the nerve tissue does not occur until 30 minutes to 24 hours following ex-
posure (usually in the evening or night after exposure), any source which has a significant ultraviolet
component must be used with caution. Figures 1-1 and 1-2, from the work of Pitts and his associates,!*?
indicate the sensitivity of rabbits and primates to the ultraviolet.

The middle infrared (10.6 x) portion of the spectrum also affects the corneal epithelium as the
primary damage site. In this spectral region the damage mechanism is of thermal origin, not abiotic
as in the case of the ultraviolet. Thus, the damage mechanism is a function of the time-temperature

history within a single exposure interval. The threshold for a minimal irreversible lesion on the cornea is
given in Figure 1-3.

600

40.01- 4 =RABBIT THRESHOLD

200+ (AFTER COGAN AND KINSEY)
100

@ =RABBIT THRESHOLD
(AFTER PITTS st al)

RABBIT THRESHOLD EXPOSURE Qc (E8%3-)x108

220 240 260 280 300 320 340
WAVELENGTH IN NANOMETERS
Fig. 1-1. Threshold exposure (Q.) for the production of photophthalmia in rabbits versus

wavelength of ultraviolet light. Each point on the curve is plotted at the peak wavelength of the
various 10 nm wavebands. (From Pitts, D. G. and Kay, K. R., Amer.J. Optom., 46, 561, 1969.)
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Fig. 1-2. A comparison of thresholds (Q.) for the production of photophthalmia
in rabbits and primates, as a function of wavelength. (From Pitts, D. G., et al., SAM-

TR-70-28, USAF School of Aerospace Medicine, Brooks A. F. Base, Texas, in press.)
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Fig. 1-3. Threshold CO; (10.6 ) power levels for irreversible lesions on the cornea as a function of ex-
posure time. Data taken from references 3 (Vassiliadis), 4 (Leibowitz), 5 (Gullberg), 6 (Campbell), and 7 (Fine).
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The wavelength interval covering the visible and near visible region (400 nm to 1500 nm) must be
considered in terms of the spectral characteristics of the eye. The transmission of the ocular media is
illustrated in Figure 1-4, and the absorption of the retinal pigment epithelium (PE) and choroid, as
measured by Geeraets and Berry,® is shown in Figure 1-5.

Some investigators® have considered laser devices operating in the 1.5-2.0 u interval as “ eye safe,”
a factor demonstrated by Lund and his associates'® as possibly correct. However, until further work has
been done on the vitreous and lens effects in this wavelength region, neither the middle infrared
surface exposure levels nor the visible wavelength threshold levels should be exceeded for human occu-
pational exposure.

Retinal damage has been observed in the visible and near visible wavelength interval by many
observers. Figure 1-6 gives the Medical College of Virginia measured and calculated retinal irradiance
for white light (Xenon arc) and ruby laser exposure necessary to cause an irreversible, minimal oph-
thalmosgopically visible lesion for an extended (10 u to 800 u diameter) image on the retina.!!:!2
Table 1-1 gives the data for the minimum image size, barely ophthalmoscopically visible lesion pro-
duction by several sources from the Stanford Research Institute.® The results are in reasonable agree-
ment. Table 1-2 is a summary of the reported values of argon and helium-neon laser-produced power
entering the eye to cause a threshold lesion for various exposure durations and image diameters.!?
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Fig. 1-4. Percent transmission for light of equal intensity through the ocular media of human, monkey
(rhesus), and rabbit eyes. (From Geeraets, W. J. and Berry, E. R., Amer. J. Ophthal., 66,.15, 1968.)
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PERCENT ABSORPTION IN RETINAL PIGMENT EPITHELIUM
AND CHOROID

GEERAETS and BERRY
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Fig. 1-5. Percent absorption of light of equal intensity at the cornea in the retinal pigment epithelium
and choroid for rabbit, monkey, and man. (Redrawn to include correction for reflection from Figure 2 of
Geeraets, W. J. and Berry, E. R., Amer. J. Ophthal., 66, 15, 1968.)
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Fig. 1-6. Retinal power density necessary to cause minimal ophthalmoscopically observable lesions. (From
Clarke, A. M., et al., Arch. Environ. Health, 18, 424, 1969.) Copyright 1969, American Medical Association.



