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Introduction: The
Main Problem

Prerequisites. What background is needed for reading this text? Chiefly,
a knowledge of piecewise linear topology. For many years the standard
reference in that area has been the text Introduction to Piecewise-Linear
Topology, by C. P. Rourke and B. J. Sanderson (1972), and we assume
familiarity with much of their book. To be honest, that book presumes
extensive understanding of both general and algebraic topology; as a con-
sequence we implicitly are assuming those subjects as well. In an attempt
to limit our presumptions, we specifically shall take as granted the results
from two fairly standard texts on general and algebraic topology, both by
J. R. Munkres—namely, his Topology: Second Edition (2000) and Elements
of Algebraic Topology (1984), each of which can be treated quite effectively
in a year-long graduate course.

Unfortunately, even those three texts turn out to be insufficient for all
our needs. The purpose of the initial Chapter 0, the Prequel, is to correct
that deficiency.

Basic Terminology. The notation laid out in this subsection should be
familiar to those who have read Rourke and Sanderson’s text. Neverthe-
less, we spell out the essentials needed to fully understand the forthcoming
discussion of the primary issues addressed in this book.

Here R denotes the set of real numbers and R” denotes n-dimensional
Euclidean space, the Cartesian product of n copies of R. For 1 < k < n we
regard R¥ as included in R” in the obvious way, as the subset containing all
points whose final (n — k)-coordinates are all equal to zero.

xiii



xiv Introduction: The Main Problem

We use B" to denote the standard n-ball (or n-cell) in R”, Int B" to
denote its interior, and S™ ! to denote the standard (n — 1)-sphere, the
boundary, 0B™, of B™. Specifically,

Bn:{<ﬂf1,$2,...,1‘n>ER”|$%—|—1‘§—}—-.-+1€1§1}’
IntBn:{<£Cl,$2,...,xn>ER”]x%+x%+...+mi<l}’ and
Sn_1:83n2{<9§1,$2,...,xn>ER”’$%+Q§%+...+$%:1}‘

We call any space homeomorphic to B™ or S™ 1 an n-cell or an (n—1)-
sphere, respectively. The k-ball B* is defined as a subset of R*, but for
each k < n the inclusion R¥ ¢ R” determines a standard k-ball B* and a
standard (k — 1)-sphere S¥~1 in R” as well.

All simplicial complexes and CW complexes are assumed to be locally
finite. A polyhedron is the underlying space of a simplicial complex. While
a simplicial complex K and the underlying polyhedron |K| are two differ-
ent things, we will not always maintain this distinction in our terminology.
Piecewise linear is abbreviated PL.

An n-dimensional (topological) manifold is a separable metric space in
which each point has a neighborhood that is homeomorphic to R”. Such a
neighborhood is called a coordinate neighborhood of the point.

The Main Problem. The central topic in this text is topological embed-
dings. Formally, an embedding of one topological space X in another space
Y is nothing more than a homeomorphism of X onto a subspace of Y. The
domain X is called the embedded space and the target Y is called the am-
bient space. Two embeddings \,\ : X — Y are equivalent if there exists a
(topological) homeomorphism © of Y onto itself such that © o A = ). The
main problem in the study of topological embeddings is:

Main Problem. Which embeddings of X in'Y are equivalent?

In extremely rare circumstances all pairs of embeddings are equivalent. For
instance, if X is just a point, the equivalence question for an arbitrary
pair of embeddings of X in a given space Y amounts to the question of
homogeneity of Y, which has an affirmative answer whenever, for example,
Y is a connected manifold.

Ordinarily, then, our interest will turn to conditions under which embed-
dings are equivalent, and we will limit attention to reasonably well-behaved
spaces X and Y. Specifically, in this book the embedded space X will ordi-
narily be a compact polyhedron! and the ambient space Y will always be a
manifold, usually a piecewise linear (abbreviated PL) manifold. If there are
embeddings of the polyhedron X in the PL manifold Y that are homotopic

1o major exception is the study of embeddings of the Cantor set.
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but not equivalent, then X is said to knot in Y. For given polyhedra X and
Y, it is often possible to identify a distinguished class of PL embeddings of
X in Y that are considered to be unknotted; any PL embedding that is not
equivalent to an unknotted embedding is then said to be knotted.

While we do place limitations on the spaces considered, we intentionally
include the most general kinds of topological embeddings in the discussion.
Let X be a polyhedron and let Y be a PL manifold. An embedding X — Y
is said to be a tame embedding if it is equivalent to a PL embedding; the
others are called wild. For embeddings of polyhedra the Main Problem splits
off two fundamental special cases, one called the Taming Problem and the
other the (PL) Unknotting Problem.

Taming Problem. Which topological embeddings of X in'Y are equivalent
to PL embeddings?

Unknotting Problem. Which PL embeddings of X in'Y are equivalent?

The point is, for tame embeddings the Main Problem reduces to the
Unknotting Problem, and PL methods provide effective — occasionally com-
plete — answers to the latter. As we shall see, local homotopy properties
give very precise answers to the Taming Problem. This also means that
local homotopy properties make detection of wildness quite easy. There are
related crude measures that adequately differentiate certain types of wild-
ness, but the category of wild embeddings is highly chaotic. In fact, at the
time of this writing very little effort had been devoted to classifying in any
systematic way the wild embeddings of polyhedra in manifolds.

A closed subset X of a PL manifold N is said to be tame (or, tame as
a subspace) if there exists a homeomorphism h of N onto itself such that
h(X) is a subpolyhedron; X itself is wild if it is homeomorphic to a simplicial
complex but is not tame. Here the focus is more on the subspace X than
on a particular embedding. One can provide a direct connection, of course:
a closed subset X of a PL manifold /V is tame as a subspace if and only if
there exist a polyhedron K and a homeomorphism g : K — X such that
A =inclusiono g : K — N is a tame embedding.

We say that a k-cell or (kK — 1)-sphere X in R" is flat if there exists
a homeomorphism A of R™ such that h(X) is the standard object of its
type. Generally, whenever we have some standard object S C R™ and a
subset X of R"™ homeomorphic to S, we will say that X is flat if there is
a homeomorphism A : R® — R"™ such that h(X) = S. In other words, S
represents the preferred copy in R™, and another copy in R" is flat if it is
ambiently equivalent (setwise) to S.

Flatness Problem. Under what conditions is a cell or sphere in R™* flat?
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The problems listed above are the main ones that will occupy attention
in this text. They all can be viewed as uniqueness questions in the sense that
they ask whether given embeddings are equivalent. There are also existence
questions for embeddings, which will be studied alongside the uniqueness
questions. We identify two such: one global, the other local.

Existence Problem. Given a map f: X — Y, is f homotopic to a topo-
logical embedding or a PL embedding?

Approximation Problem. Which topological embeddings of X in'Y can
be approzimated by PL embeddings?

The flatness concept has a local version. A topological embedding e :
M — N of a k-dimensional manifold M into an n-dimensional manifold N
is locally flat at x € M if there exists a neighborhood U of e(z) in N such
that (U,U Ne(M)) = (R™,R¥). An embedding is said to be locally flat if
it is locally flat at each point x of its domain. The last two problems have
local variations: for example, one can ask whether a map of manifolds is
homotopic to a locally flat embedding or whether a topological embedding
of manifolds can be approximated by locally flat embeddings.

When considering an embedding e : X — Y, the dimension of Y is called
the ambient dimension. Almost all of the examples and theorems in this
book involve embeddings in manifolds of ambient dimension three or more.
We skip dimension two because classical results like the famous Schonflies
theorem (Theorem 0.11.1) imply that no nonstandard local phenomena arise
in conjunction with embeddings into manifolds of that dimension.

While isolated examples of wild embeddings were discovered earlier, the
work of R. H. Bing in the 1950s and 1960s revealed the pervasiveness of
wildness in dimensions three and higher. His pioneering work led to a pro-
liferation of embedding results, first concentrating on dimension three, but
soon expanding to include higher dimensions as well. The subject of topo-
logical embeddings is now a mature branch of geometric topology, and this
book is meant to be a summary and exposition of the fundamental results
in the area.

Organization. As mentioned earlier, the initial Chapter 0 addresses back-
ground matters. The real beginning, Chapter 1, treats knottedness, tame-
ness and local flatness; it provides examples of knotted, PL codimension-two
sphere pairs in all sufficiently large dimensions, and it delves into the local
homotopy properties of nicely embedded objects. Chapter 2 presents the
basic examples that motivate the study and offers context for theorems to
come later; it also includes several flatness theorems that can be proved
without the use of engulfing. Engulfing — the fundamental technical tool for
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the subject — is introduced and carefully examined in Chapter 3. The re-
maining chapters strive to systematically investigate the central embedding
problems. That investigation is organized by codimension. The codimen-
sion of an embedding e : X — Y is defined by codim(e) = dimY — dim X,
the difference between the ambient dimension and the dimension of the em-
bedded space. Generally speaking, the greater the codimension the easier it
is to prove positive theorems about embeddings. Chapter 4 treats the trivial
range, the range in which the codimension of the embedded space exceeds its
dimension, where the most general theorems hold. Next, Chapter 5 moves
on to codimension three, to which many trivial-range theorems extend with
appropriate modifications. However, very few of the codimension-three the-
orems extend to codimension two, so Chapter 6 is largely devoted to the
construction of codimension-two counterexamples. In codimension one the
situation changes once more, and again there are many positive results,
which form the subject of Chapter 7. The book concludes in Chapter 8 with
a quick description of some codimension-zero results.
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Chapter 0

Prequel

This Prequel sets forth — with references, but with few proofs — important
background results covered by neither Rourke and Sanderson nor Munkres.
Readers may want to briefly familiarize themselves with the contents of this
chapter and then begin their serious study with Chapter 1. Chapter 0 can be
used as a reference for topics that arise later and consulted as needed. The
prerequisites covered in this chapter should be enough to carry the reader
through the first five chapters of the book. Beyond that point, additional
deep material occasionally will be interwoven, without proof, to present a
complete picture of current developments.

0.1. More definitions and notation

The n-cube I™ is the n-fold product [—1, 1]™. Following Rourke and Sander-
son (1972, page 4), we consistently use I' to denote the interval [—1,1], but
sometimes use I to denote the interval [0,1]. Whether I denotes [0,1] or
[—1, 1] should be clear from the context. Of course I™ is homeomorphic to
B™, so the n-cube is an n-cell. In some contexts a k-cell will also be called
a k-disk and will be denoted DF.

Let X and Y be two spaces with base points z¢ and yg, respectively.
The wedge (or wedge sum) of X and Y is the quotient of the disjoint union
X UY obtained by identifying xy and yy. The wedge of X and Y is denoted
X VY and might also be called the one-point union of X and Y; the wedge
of a finite number of circles is often called a bouguet of circles (Figure 0.1).

Upper half space R} consists of all the points in R”™ whose last coordinate
is nonnegative; i.e.,

RY = {{(x1,22,...,2,) | each z; is a real number and z,, > 0}.

1



2 0. Prequel

Figure 0.1. A bouquet of six circles

Note that RF ¢ R if k < n.

An n-dimensional 0-manifold (read “boundary manifold”) is a separable
metric space in which each point has a neighborhood! that is homeomorphic
to R7. We will use superscripts to denote the dimension of a manifold or a
O-manifold. Thus the statement “M™ is a manifold” is to be interpreted to
mean that M is an n-dimensional manifold.

Let M be an n-dimensional 0-manifold. The interior of M (denoted
Int M) consists of all points * € M such that  has a neighborhood that
is homeomorphic to R™. The boundary of M (denoted OM) is defined by
OM =M \ Int M.

Remark. Our use of the term d-manifold is somewhat nonstandard, but
we prefer it to the more awkward manifold-with-boundary. The use of the
term d-manifold allows us to be consistent in our use of the word manifold:
in this book a manifold always has empty boundary.

A closed manifold is a manifold that is compact and has empty boundary.
Since all our manifolds have empty boundary (by definition), there is no
difference between a closed manifold and a compact manifold.

The Invariance of Domain Theorem (Munkres, 1984, Theorem 4-36.5)
should be used to work several of the following exercises.

Exercises
0.1.1. The dimension of a manifold is well defined: two manifolds of dif-
ferent dimensions cannot be homeomorphic.
0.1.2. The dimension of a d-manifold is well defined.

0.1.3. Let M be an n-dimensional d-manifold and let y be a point in M.
If the last coordinate of h(y) is zero for one pair (U, h) in which U

1A neighborhood is not necessarily an open set. A neighborhood of the point z in the space
X is any subset U of X such that z is contained in the topological interior of U.



