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Chapter 1

Introduction

Beginning with the groundbreaking work of Donaldson in about 1980 it
became clear that gauge-theoretic invariants of principal bundles and con-
nections were an important tool in the study of smooth four-dimensional
manifolds. Donaldson showed the importance of the moduli space of anti-
self-dual connections. The next fifteen years saw an explosion of work in
this area leading to computations of Donaldson polynomial invariants for
a wide class of four-dimensional manifolds, especially algebraic surfaces.
These computations yielded many powerful topological consequences in-
cluding, for example, the diffeomorphism classification of elliptic surfaces.
For some of the results obtained by using these techniques see [1], [6], and
[2].

Last fall, motivated by new work in quantum field theory, Seiberg and
Witten [9], introduced a different gauge-theoretic invariant which they
claimed should be closely related to Donaldson’s invariants. Indeed they
gave an explicit formula for the relationship of their invariant to Donald-
son’s. While the link claimed by Seiberg-Witten between their invariants
and Donaldson’s has not yet been established mathematically, it is clearly
true and can be shown to hold in all computed examples. Nevertheless, one
can forget this supposed link and work directly with the new invariants as
a substitute for the anti-self-dual invariants. This has been the approach
during the last year or so.

It was clear from the beginning that the new invariants would be easier
to work with since they involved principal bundles with structure group
the circle instead of the non-abelian groups such as SU(2) which arise
in Donaldson theory. The surprise was that such simple invariants could
capture the subtlety that Donaldson’s invariants revealed. But in short
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2 CHAPTER 1. INTRODUCTION

order, Witten [17] and then Taubes, Kronheimer, and Mrowka showed
that indeed these new invariants did capture these subtleties and that they
were easier to compute, at least in many cases. They did this by explicitly
solving the Seiberg-Witten equations over Kahler surfaces. (See [3] for
one account of the results for Kahler surfaces.) There followed in quick
succession a series of remarkable theorems, each extending in a different way
partial results from Donaldson’s anti-self-dual theory. In fact, conjectures
which seemed reasonable from the perspective of Donaldson theory but
technically difficult, if not unreachable within that theory, suddenly became
the standard test cases for the power of the new invariants. One by one
these conjectures were established — leaving only one classical conjecture
outstanding. The remaining one, called the 11/8ths-Conjecture, deals with
the quadratic forms that arise as intersection forms of simply connected
spin four-manifolds.

It is the purpose of these notes to lay the groundwork for the Seiberg-
Witten theory and then to show how one computes these invariants for
most Kahler surfaces. We begin with the basics of Clifford algebras, spin
structures and their cousins Spin°-structures, spin representations, and
spinor bundles. We then consider the Dirac operator on the spin bundles
over a riemannian four-manifold. The connection with Kahler geometry is
facilitated because of the close connection on a Kahler manifold between
the Dirac operator and 8. All of this is examined in detail. The book of
Lawson-Michelson [7] gives a complete introduction to this material as well
as an elaborate treatment of many more topics in the spinor geometry.

We then exhibit the Seiberg-Witten equations and show how to use
these equations to produce a finite dimensional manifold, the moduli space
of solutions to these equations modulo changes of gauge, inside an infinite
dimensional configuration space. The homology class of this moduli space
is then the value of the Seiberg-Witten invariant. We establish analogues
of familiar theorems from anti-self-dual theory. The equations defining the
moduli space are elliptic modulo the group of changes of gauge. A generic
perturbation of the equations leads to a smooth orientable moduli space
whose dimension can be computed by the Atiyah-Singer index theorem.
To orient this moduli space it suffices to choose an orientation of H% and
H?' of the underlying four-manifold. As long as b7 > 1 the moduli space
varies smoothly as we vary the metric and perturbation. When bj =1
the generic perturbation yields a smooth moduli space, but there will be
singularities when we vary the metric and perturbation. These singularities
are reducible solutions to the equations. This leads to a chamber structure
for the Seiberg-Witten invariants in case b3 = 1, similar to what happens
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in the anti-self-dual theory.

We go on to establish one special property of this theory, namely the
compactness of the moduli space of solutions. This is a consequence of a
priori bounds for the pointwise norms of solutions to the equations. This
result has no analogue for the anti-self-dual equations. Much of the geo-
metric richness and much of the technical complexity of the anti-self-dual
theory is directly related to the non-compactness of the moduli space. For
both better and worse, that is all missing here. The Seiberg-Witten moduli
spaces are compact and vary by a compact bordism as we vary the metric.

Having presented all these technical results, it is now clear that the ho-
mology class of the moduli space in the ambient space of configurations is
an invariant of the underlying smooth four-manifold and the isomorphism
class of the Spin® structure on that manifold. By definition, the Seiberg-
Witten invariant of the Spin© structure is this homology class. We finish
by explicitly computing the moduli spaces of solutions on ‘most’ algebraic
surfaces, leading immediately to a computation of the Seiberg-Witten in-
variant for any Spin® structure over the surface. There are some special
cases that we do not treat. These can, however, be treated by an elabora-
tion of the techniques that we introduce. A complete discussion is contained
in [3].

There is much more to be said about the Seiberg-Witten equations and
the invariants that are defined from these equations. There are analogues
of the theorems for Kahler manifolds which hold for symplectic manifolds,
see [12, 13, 14]. There are also gluing theorems which lead to Meyer-
Vietoris principals for solutions to the equations, see [8]. These then lead to
product formulas for the invariants, which is one approach to gaining a more
topological understanding of the invariants. In spite of the striking progress
over the last year, much remains to be done. It is my hope that these notes
will serve as an introduction making it possible for more mathematicians
to contribute to this progress.

These notes are a written version of lecture series given at Columbia
University and Princeton University during the past year. I wish to thank
the graduate students at both Universities who attended these lectures and
who, by their comments and questions, helped shape these notes.
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Chapter 2

Clifford Algebras and
Spin Groups

For any n > 2 the orthogonal group SO(n) has fundamental group Z/2Z
and hence has a universal covering group called Spin(n) which is a non-
trivial double covering. There is a beautiful algebraic construction which
yields the Spin groups (and much more as well). This is the subject of
Clifford algebras.

2.1 The Clifford Algebras

An example. Before delving into the complexities of Clifford algebras
in general, let us consider a simple example. Consider the unit sphere S
inside the quaternion algebra H. Multiplication of quaternions induces a
group structure on S3. Let us consider the action of this group on H by
conjugation

S*xH—-H

(a,A) = ara~l.

This action preserves the norm, i.e., is an orthogonal action. It also leaves
invariant the center of H which is R C H, and hence it leaves invariant the
perpendicular complement to R which is the three-dimenisonal space Im H
of purely imaginary quaternions. Of course, Im H is naturally identified
with the Lie algebra of S® and the action we are considering is the adjoint
action of S® on its Lie algebra.

o



6 CHAPTER 2. CLIFFORD ALGEBRAS AND SPIN GROUPS

It 1s an easy geometric exercise to see that a unit quaternion a, differ-
ent from +1, acts by conjugation on H preserving the complex plane Ca
spanned by a and its perpendicular Caj. On the first complex plane con-
Jugation by a acts trivially and on the second it acts by rotation through
twice the angle # between a and 1. It follows that the conjugation action
of @ on ImH leaves invariant the line tangent to the circle generated by
a and acts by rotation through 20 on the perpendicular complement and
thus that every rotation of Im H is in the image of the representation

5% 5 SO(Im H) = SO(3).

It is also clear that the kernel of this representation is the intersection of
53 with the center of H, which is the center of $ and is {+1}.

In this way we construct the double covering group of SO(3) and iden-
tify 1t with the group of quaternions of length one under multiplication.

The definition of the Clifford algebra associated to an positive-
definite inner product space. Now let us turn to the general case.
Let V be a finite dimensional vector space over R with a positive definite
inner product (-, -) leading to a norm denoted || -||. We consider the tensor
algebra
T(V) = eanzoV®-.-~®v
n times

generated by V. It is an associative algebra with unit 1. The Clifford
algebra Cl(V') generated by V is the quotient of T'(V) by the two-sided
ideal generated by all elements of the form

v+ |y

for v € V. Notice that the grading on T(V') descends to a Z/2Z grading
on CI(V), giving a decomposition

CI(V) = Clo(V) & Cly (V)

where Clo(V) is a subalgebra and Cl, (V) is a module over this subalgebra.
Corresponding to this splitting, we can write any v € CI(V) as vy +v,. We
denote by

eCl(V) = ClYV)

the algebra homomorphism that is multiplication by +1 on Cly(V) and is
multiplication by —1 on Cly(V); i.e., €(vo + v1) = vo — v;.
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Choosing an orthonormal basis {ej,...,e,} for V we can write CI(V)
in terms of generators and relations. Namely, CI(V) is the algebra over R
generated by {e;, ..., e,} subject to the relations e = —1 for all i < n and
ei-ej = —ej - €; for all i # j. In particular, it follows that every element of
Cl(V) can be written uniquely as a sum of products of the form

€i,

1€

1
where 7 < --- < i;. Thus, the dimension of CI(V') as a real vector space
is 2¢ where d is the dimension of V over R.

Examples. (i) Let R" denote the usual Euclidean space of dimension n.
Then CI(R!) = R[z]/(2% + 1) = C. The subalgebra Clo(R!) is identified
with the reals and Cl;(R!) with the purely imaginary complex numbers.

(ii) Similarly, CI(R?) is the algebra generated by z,y subject to the
relations

= -1y’ = -1;2y = —yz.

Hence, CI(R?) is isomorphic to the quaternion algebra H. The subalgebra
Clo(R?) is generated by zy and can be identified with C C H.

(iii) CI(R3) is of dimension 8 over R. It is generated by z,y, z with
2?2 =y? = 2?2 = -1 and zy = —yz,zz = —zz,yz = —zy. This algebra is
isomorphic to H & H. The isomorphism between H and the first factor,
resp., the second factor, i1s given by sending 1,1, j, k to

l4+zyz zy—2z yz—z zz—y
2 2 7 2 7 27

resp., to
l—zyz zy+2z yz2+c zz+y
2 ' 2 7 2 7 2

The subalgebra Cly(R3) is identified with the diagonal copy of H in this
decomposition.

(iv) For any inner product space V, we have an isomorphism of algebras
Cl(V) = Clo(V ® R). Letting e be a unit vector in R, the isomorphism is
given by

vo + v V> Vo + vie.

It is an easy exercise to show that this map is an isomorphism of algebras.
In particular, Clo(R*) is isomorphic to H & H.
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Comparison with the Exterior Algebra. The grading on T(V) in-
duces an increasing filtration

0CFHCFC -

of CI(V) by linear subspaces; namely, we set F, equal to the image in
Cl(V) of
@nStV@'."®V.
n times
Clearly, the multiplication in CI(V) preserves this filtration in the sense
that it induces maps
Fi®@F; = Fiyj.

Thus, there is an associated graded algebra
Grr, (CU(V)) = @5ZoFn/Fn-1
with the induced multiplication.

Claim 2.1.1 Grz, (CI(V)) s naturally isomorphic to the exterior algebra
A*(V).

Proof. Let F, be the increasing filtration of T'(V) coming from the
grading. Clearly, there is a natural algebra isomorphism between T'(V)
and Grxz (T(V)). Consequently, we have a commutative diagram

I(vev+|v|?l]) — T(V) ey Ci(V) — 0

! - 1

I(v®v)  — Grz (T(V)) — Grz,(CI(V)) — 0.

Clearly, the quotient of T'(V) by the two-sided ideal generated by v ® v for
v € V is exactly the exterior algebra A*(V). Thus, this diagram induces
the claimed isomorphism. O

There is a natural splitting ¢ of the map CI(V) — A*(V). The map
o is linear but not multiplicative. It is defined as follows. Consider an
elementary element in A*V (; i.e., one contained in A¥(W) c A*(V) for
some k-dimensional subspace W C V. Such an element can be written as
re; A -+ - A e, where the e¢; form an orthonormal basis for W and where

r > 0. We define
o(res A---Neg) =rey - €.
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It 1s an easy exercise to show that this determines a well-defined mapping
which splits the natural projection.

Using this isomorphism, we can view CI(V) as being given by a new
multiplication on A*(V). This new multiplication is generated by

v- (A Av)=vAn A Ay —vl(vp A Ag)

where Z i1s the contraction:

vi(vy A-- /\vk)-Z( 1 (vv.vll\ AT A A v,

2.2 The groups Pin(V) and Spin(V)

Let C1*(V) denote the multiplicative group of units of the algebra CI(V).
We define the group Pin(V) as the subgroup of CI* (V') generated by ele-
ments v € V with ||v||> = 1. Notice that the given generators of Pin(V) are
units since the square of any one of them is —1. We let Spin(V') be the inter-
section of Pin(V') with Cly(V), i.e., the kernel of the group homomorphism
Pin(V) — Z/2Z induced by the splitting of CI(V) = Clo(V) & Cly (V).
Since the generators of Pin(V) are contained in Cly(V), Spin(V) is the
subgroup of index two consisting of all elements in Pin(V) which can be
written as a product on an even number of the given generators for Pin(V).
Let us compute these groups in the first three examples.

(1) The group Pin(1) is the subgroup of C generated by +i. Hence it is
a cyclic group of order 4. The subgroup Spin(1) is the group of order two
+1 inside R..

(ii) The group Pin(2) is the subgroup of H generated by the circle
through j and k, ie., by all elements of the form cos(6)j + sin(@)k for
f € S'. It is easy to see that this group is the union of two circles — the
usual unit circle in the complex plane and j times it. Hence, the group
Spin(2) is isomorphic to S*.

(iii) The group Spin(3) is isomorphic to the group of unit quaternions
in Clo(R3) = H. To see this, notice that under the identification of CI(R?)
with H @ H given above, the vector space R? is identified with all pairs
(a, —a) where « is a purely imaginary quaternion. It follows that for any
pair a, 3 of purely imaginary unit quaternions the product

af € Spin(V) CClh(R®) =HS He H.

It is easy to see that this set of products generates the group S? of all unit
quaternions.
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(iv) Let us consider Spin(4) C Clo(R*) = H® H. Of course, under the
identification CI(R?) = Cly(R?), the group Spin(3) becomes a subgroup of
Spin(4). But there are many different three-dimensional subspaces of R*.
For each such subspace we obtain an embedding of Spin(3) into Spin(4).
It is an easy exercise to show that the union of these images generates all
of $? x S C H x H. This then identifies Spin(4) with SU(2) x SU(2).

Notice that if {e;,...,e,} is an orthonormal basis for V, then every
product e;, - - -e;, is an element of Pin(V). This means that Pin(V) con-
tains a vector space basis for CI(V'), and consequently that CI(V) is the
smallest algebra over R containing Pin(V) as a subgroup of its multiplica-
tive group of units. Similarly, Spin(V') contains an R-basis for Cly(V).

Corollary 2.2.1 e Two (real or complex) representations of the alge-
bra Cly(V') whose restrictions to Spin(V') are isomorphic representa-
tions are in fact isomorphic representations of the algebra.

o Let A be a (real or complez) module over Cly(V) and let A’ C A be
a subspace tnvariant under the induced action of Spin(V). Then A’
is a submodule for the Cly(V) action.

Proof. Suppose that two modules A and A’ for Cly(V) admit a linear
1somorphism ¢ which commutes with the induced Spin(V') actions. Then
¢ commutes with the actions of an R-basis of Cly(V) and hence commutes
with the Cly(V) actions. That is to say, ¢ is an isomorphism of Cly(V)-
modules. This proves the first result. The second is established similarly.

O

Notice that there are analogous results for CI(V') and Pin(V).

Clearly, the natural action of the group O(V) on V extends to an action
of O(V) on CI(V) as algebra automorphisms preserving the Z/2Z-grading.
This action is effective and hence induces an embedding of O(V) into the
algebra automorphisms of CI1(V). Since CI(V') is generated as an algebra
by V C Cl(V) and since v - v = —||v]|?1, it is easy to see that the image of
this embedding consists of all the algebra automorphisms of C!(V) which
preserve the subspace V. The subgroup SO(V) is represented as the group
of all algebra automorphisms of CI(V) which preserve V and act in an
orientation-preserving fashion on it.

The group Spin(V) acts on CI(V) via conjugation: ¢ -c = aca™!. It
is easy to see that this action also preserves the algebra structure and the



