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Foreword

In October 1999, at the invitation of my eminent friend, Professor George Klir, I
visited the Binghamton campus of the State University of New York. In the course
of my visit, I became aware of the fact that Professor Klir, a leading contributor
to fuzzy logic and theories of uncertainty, was collaborating with Professor Robert
Demicco, a leading contributor to geology and an expert on sedimentology, on an
NSF-supported research project involving an exploration of possible applications of
fuzzy logic to geology. What could be more obvious than suggesting to Professors
Klir and Demicco to edit a book entitled “Fuzzy Logic in Geology.” No such book
was in existence at the time.

I was delighted when Professors Klir and Demicco accepted my suggestior. And,
needless to say, I am gratified that the book has become a reality. But, what is really
important is that Professors Klir and Demicco, the contributors and the publisher,
Academic Press, have produced a book that is superlative in all respects.

As the editors state in the preface, Fuzzy Logic in Geology is intended to serve three
principal purposes: (1) to examine what has been done in this field; (2) to explore
new directions; and (3) to expand the use of fuzzy logic in geology and related fields
through exposition of new tools.

To say that Fuzzy Logic in Geology achieves its aims with distinction is an under-
statement. The excellence of organization, the wealth of new material, the profusion
of applications, and the high expository skill of contributors, including Professors Klir
and Demicco, combine to make the book an invaluable reference and an important
source of new ideas. There is no doubt that Fuzzy Logic in Geology will be viewed
as a landmark in its field.

In the preface, Professors Klir and Demicco note that applications of fuzzy logic
in science are far less visible than in engineering and, especially, in the realm of
consumer products. Is there an explanation?

In science, there is a deep-seated tradition of striving for the ultimate in rigor and
precision. Although fuzzy logic is a mathematically based theory, as is seen in Chapter
2, there is a misperception, reflecting the connotation of its label, that fuzzy logic is
imprecise and not well-founded. In fact, fuzzy logic may be viewed as an attempt
to deal precisely with imprecision, just as probability theory may be viewed as an
attempt to deal precisely with uncertainty.



X Foreword

A related point is that in many of its applications, a concept which plays a key
role is that of a linguistic variable, that is, a variable where values are words rather
than numbers. Words are less precise than numbers. That is why the use of linguistic
variables in fuzzy logic drew critical comments from some of the leading members
of the scientific establishment. As an illustration, when I gave my first lecture on
linguistic variables in 1972, Professor Rudolf Kalman, a brilliant scientist/engineer,
had this to say:

I would like to comment briefly on Professor Zadeh's presentation. His proposals could be
severely, ferociously, even brutally criticized from a technical point of view. This would be
out of place here. But a blunt question remains: Is Professor Zadeh presenting important
ideas or is he indulging in wishful thinking? No doubt Professor Zadeh’s enthusiasm for
fuzziness has been reinforced by the prevailing climate in the US—one of unprecedented
permissiveness. ‘Fuzzification’ is a kind of scientific permissiveness; it tends to result in
socially appealing slogans unaccompanied by the discipline of hard scientific work and patient
observation.

In a similar vein, a colleague of mine at UCB and a friend, Professor William
Kahan, wrote:

Fuzzy theory is wrong, wrong, and pernicious. I cannot think of any problem that could not
be solved better by ordinary logic. ... What Zadeh is saying is the same sort of things as,
‘Technology got us into this mess and now it can’t get us out’. Well, technology did not get us
into this mess. Greed and weakness and ambivalence got us into this mess. What we need is
more logical thinking, not less. The danger of fuzzy theory is that it will encourage the sort of
imprecise thinking that has brought us so much trouble.

What Professors Kalman, Kahan, and other prominent members of the scientific
establishment did not realize is that mathematically based use of words enhances the
ability of scientific theories to deal with real-world problems. In particular, in both
science and engineering, the use of words makes it possible to exploit the tolerance
for imprecision to achieve tractability, robustness, simplicity and low cost of solution.
The use of linguistic variable is the basis for the calculus of fuzzy if-then rules—a
calculus which plays a key role in many of the applications of fuzzy logic—including
its applications in geology.

During the past few years, the use of words in fuzzy logic has evolved into method-
ology labeled computing with words and perceptions (CWP)—a methodology which
casts a new light on fuzzy logic and may lead to a radical enlargement of the role of
natural languages in science and engineering.

Computing with words and perceptions is inspired by the remarkable human capa-
bility to perform a wide variety of physical and mental tasks, e.g., driving a car in
city traffic or playing tennis, without any measurements and any computations. In
performing such tasks, humans employ perceptions—perceptions of distance, speed,
direction, intent, likelihood, and other attributes of physical and mental objects.
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There is an enormous literature on perceptions, spanning psychology, philosophy,
linguistics, and other fields. But what has not been in existence is a theory in which
perceptions can be operated on as objects of computation. Fuzzy logic provides a
basis for such a theory—a theory which is referred to as the computational theory of
perceptions (CTP).

In the computational theory of perceptions, perceptions are dealt with not as patterns
of brain activity, but through their descriptions in a natural language. In this sense,
a natural language may be viewed as a system for describing perceptions. Thus, if
classical, bivalent logic is viewed as the logic of measurements, then fuzzy logic may
be viewed as the logic of perceptions.

Although the methodology of computing with words and perceptions is not treated
explicitly in the book, the basic ideas which underlie it are in evidence throughout.
Furthermore, Fuzzy Logic in Geology ventures beyond well-established techniques
and presents authoritative expositions of methods which lie on the frontiers of
fuzzy logic. In this respect, particularly worthy of note are the chapters on for-
mal concept analysis (R. B&lohldvek), F-transformation (1. Perfilieva), and linguistic
theory (V. Novik).

In sum, Fuzzy Logic in Geology is a true role model. It is a high quality work
which opens the door to application of new methods and new viewpoints to a variety
of basic problems in geology, geophysics, and related fields. It is well-organized and
reader-friendly. The editors, the contributors, and the publisher deserve our thanks
and accolades.

Lotfi A. Zadeh
May 13, 2003
Berkeley, CA



Preface

This book has three purposes. Its first purpose is to demonstrate that fuzzy logic opens
a radically new way to represent geological knowledge and to deal with geological
problems, and that this new approach has been surprisingly successful in many areas
of geology. This book’s second purpose is to help geologists understand the main
facets of fuzzy logic and the role of these facets in geology. The final purpose of this
book is to make researchers in fuzzy logic aware of the emerging opportunities for
the application of their expertise in geology.

This book is a chimera in that it is oriented not only at theoreticians, practitioners,
and teachers of geology, but also at members of the fuzzy-set community. For geol-
ogists, the book contains a specialized tutorial on fuzzy logic (Chapter 2), a basic intro-
duction to the application of fuzzy logic to model geological situations (Chapter 3), an
overview of currently known applications of fuzzy logic in geology (Chapter 4), and
six additional chapters with more extensive examples of applications of fuzzy logic
to problems in a broad range of geological disciplines. For fuzzy logicians, the book
is an overview of areas of geology in which fuzzy logic is already well established or
is promising. Thus, our overall aim in preparing this book is to provide a useful link
between the two communities and further stimulate interdisciplinary research.

The book is a product of a close cooperation between the editors and the several
contributing authors. The authors were commissioned to write chapters on specific
topics. Great care has been taken to assure that the mathematical terminology and
notation are uniform throughout the book. Moreover, care was also taken to assure
that the structure of individual chapters and the style of referencing were consistent
throughout. Furthermore, authors were requested to focus on clarity of presentation,
adding summaries of technical content where appropriate. All these features make
the book attractive and appropriate as a text for graduate courses and seminars.

The book is written, by and large, in a narrative style, with the exception of a
few sections in Chapters 7 and 9. These chapters are dependent on fairly complex
mathematical preliminaries. It is far more efficient to introduce these preliminaries in
a more formal style, typical of mathematical literature, using numbered definitions,
lemmas, theorems, and examples. Although this formal presentation in Chapters 7
and 9 is essential for understanding operational details of the described methods, it
is not necessary for a conceptual understanding of the methods and their geological
applications. In fact, these chapters are structured conceptually. With this structure,

Xiii
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the reader may still get the gist of the chapter without studying the details of the
formal presentation.

The idea of preparing a book on fuzzy logic in geology was suggested to the
editors by Lotfi Zadeh, the founder of fuzzy logic, during his visit to Binghamton
University in October 1999. Our opinion then, and now, is that it was a good idea.
While fuzzy logic is now well established as an important tool in engineering, its
applications in science are far less developed. Nevertheless, the utility of fuzzy logic
in various areas of science has been increasingly recognized since at least the mid
1990s. A good example is in chemistry, where the role of fuzzy logic is examined
in the excellent book Fuzzy Logic in Chemistry, edited by Dennis H. Rouvray and
published by Academic Press in 1997. It thus seemed natural to propose this book,
which examines the role of fuzzy logic in geology, to Academic Press, with an eye
toward obtaining a synergistic effect. We hope that this book will not only serve its
purpose well, but that it will stimulate publication of other books exploring the role
of fuzzy logic in other areas of natural sciences such as biology and physics as well
as in the social sciences such as geography and economics.

Robert V. Demicco and George J. Klir
Binghamton, New York
December 2002
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Chapter 1 Introduction

Robert V. Demicco and George J. Klir

Traditionally, science, engineering, and mathematics showed virtually no interest in
studying uncertainty. It was considered undesirable and the ideal was to eliminate
it. In fact, eliminating uncertainty from science was viewed as one manifestation
of progress. This attitude towards uncertainty, prevalent prior to the 20th century,
was seriously challenged by some developments in the first half of that century.
Among them were the emergence of statistical mechanics, Heisenberg’s uncertainty
principle in quantum mechanics, and Godel’s theorems that established an inher-
ent uncertainty in formal mathematical systems. In spite of these developments, the
traditional attitude towards uncertainty changed too little and too slowly during the
first half of the century. While uncertainty became recognized as useful, or even
essential, in statistical mechanics and in some other areas (such as the actuarial pro-
fession or the design of large-scale telephone exchanges), it was for a long time
tacitly assumed that probability theory was capable of capturing the full scope of
uncertainty.

The presumed equality between uncertainty and probability was challenged only
in the second half of the 20th century. The challenge came from two important gen-
eralizations in mathematics. The first one was the generalization of classical measure
theory [Halmos, 1950] to the theory of monotone measures, which was first suggested
by Choquet [1953] in his theory of capacities. The second one was the generalization
of classical set theory to fuzzy set theory, which was introduced by Zadeh [1965]. In
the theory of monotone measures, the additivity requirement of classical measures is
replaced with a weaker requirement of monotonicity with respect to set inclusion. In
fuzzy set theory, the requirement of sharp boundaries of classical sets is abandoned.
That is, the membership of an object in a fuzzy set is not a matter of either affirma-
tion or denial, as it is in the case of any classical set, but it is in general a matter of
degree.

For historical reasons of little significance, monotone measures are often referred
to in the literature as fuzzy measures [Wang & Klir, 1992]. This name is somewhat
confusing since no fuzzy sets are involved in the definition of monotone measures.
However, monotone measures can be fuzzified (i.e., defined on fuzzy sets), which
results in a more general class of monotone measures—fuzzy monotone measures
[Wang & Klir, 1992, Appendix E].

FUZZY LOGIC IN GEOLOGY Copyright 2004, Elsevier Science (USA)
All rights of reproduction in any form reserved.
ISBN: 0-12-415146-9



2 1 Introduction

As is well known, probability theory is based on classical measure theory which,
in turn, is based on classical set theory [Halmos, 1950]. When classical measures are
replaced with monotone measures of some type and classical sets are replaced with
fuzzy sets of some type, a framework is obtained for formalizing some new types
of uncertainty, distinct from probability. This indicates that the two generalizations
have opened a vast territory for formalizing uncertainty. At this time, only a rather
small part of this territory has been adequately explored [Klir & Wierman, 1999;
Klir, 2002].

Liberating uncertainty from its narrow confines of probability theory opens new,
more expressive ways of representing scientific knowledge. As is increasingly rec-
ognized, scientific knowledge is organized, by and large, in terms of systems of
various types (or categories in the sense of mathematical theory of categories)
[Klir & Rozehnal, 1996; Klir & Elias, 2003]. In general, systems are viewed as
relations between states of some variables. They are constructed for various purposes
(prediction, retrodiction, prescription, diagnosis, control, etc.). In each system, its
relations are utilized, in a given purposeful way, for determining unknown states
of some variables on the basis of known states of some other variables. Systems in
which the unknown states are determined uniquely are called deterministic; all other
systems are called nondeterministic.

By definition, each nondeterministic system involves uncertainty of some type.
This uncertainty pertains to the purpose for which the system was constructed. It is
thus natural to distinguish between predictive uncertainty, retrodictive uncertainty,
diagnostic uncertainty, etc. In each nondeterministic system, the relevant uncertainty
must be properly incorporated into the description of the system in some formalized
language. To understand the full scope of uncertainty is thus essential for dealing with
nondeterministic systems.

When constructing a system for some given purpose, our ultimate goal is to obtain a
system that is as useful as possible for this purpose. This means, in turn, to construct a
system with a proper blend of the three most fundamental characteristics of systems:
credibility, complexity, and uncertainty. Ideally, we would like to obtain a system
with high credibility, low complexity, and low uncertainty. Unfortunately, these three
criteria conflict with one another. To achieve high usefulness of the system, we need
to find the right trade-off among them.

The relationship between credibility, complexity and uncertainty is quite intri-
cate and is not fully understood yet. However, it is already well established that
uncertainty has a pivotal role in any efforts to maximize the usefulness of constructed
systems. Although usually undesirable in systems when considered alone, uncertainty
becomes very valuable when considered in connection with credibility and complex-
ity of systems. A slight increase in relevant uncertainty may often significantly reduce
complexity and, at the same time, increase credibility of the system. Uncertainty is
thus an important commodity in the knowledge business, a commodity that can be
traded for gains in the other essential characteristics of systems by which we represent
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knowledge. Because of this important role, uncertainty is no longer viewed in science
and engineering as an unavoidable plague, but rather as an important resource that
allow us to deal effectively with problems involving very complex systems.

It is our contention that monotone measures and fuzzy sets (as well as the various
uncertainty theories opened by these two profound generalizations in mathematics)
are highly relevant to geology, and that their utility in geology should be seriously
studied in the years ahead. The aim of this book is to demonstrate this point by focusing
on the role of fuzzy set theory, and especially the associated fuzzy logic, in geology.

The term “fuzzy logic” has in fact two distinct meanings. In a narrow sense, it is
viewed as a generalization of classical multivalued logics. It is concerned with the
development of syntactic aspects (based on the notion of proof ) and semantic aspects
(based on the notion of truth) of a relevant logic calculus. In order to be acceptable,
the calculus must be sound (provability implies truth) and complete (truth implies
provability). These issues have successfully been addressed for fuzzy logic in the
narrow sense by Héjek [1998].

In a broad sense, fuzzy logic is viewed as a system of concepts, principles, and
methods for dealing with modes of reasoning that are approximate rather than exact.
The two meanings are connected since the very purpose of research on fuzzy logic in
the narrow sense is to provide fuzzy logic in the broad sense with sound foundations.
In this book, we are concerned only with fuzzy logic in the broad sense, which is
surveyed in Chapter 2, and its role in geology, which is the subject of Chapters 3—10.

From the standpoint of science, as it is still predominantly understood, the ideas
of a fuzzy set and a fuzzy proposition are extremely radical. When accepted, one
has to give up classical bivalent logic, generally presumed to be the principal pillar
of science. Instead, we obtain a logic in which propositions are not required to be
either true or false, but may be true or false to different degrees. As a consequence,
some laws of bivalent logic no longer hold, such as the law of excluded middle or the
law of contradiction. At first sight, this seems to be at odds with the very purpose of
science. However, this is not the case. There are at least the following four reasons
why allowing membership degrees in sets and degrees of truth in propositions in fact
enhances scientific methodology quite considerably:

1. Fuzzy sets and fuzzy propositions possess far greater capabilities than their classi-
cal counterparts to capture irreducible measurement uncertainties in their various
manifestations. As a consequence, their use improves the bridge between mathe-
matical models and the associated physical reality considerably. It is paradoxical
that, in the face of the inevitable measurement errors, fuzzy data are always more
accurate than their crisp (i.e., nonfuzzy) counterparts. Crisp data of each vari-
able are based on a partition of the state set of the variable. The coarseness of
this partition is determined by the resolution power of the measuring instrument
employed. Measurements falling into the same block of the partition are not dis-
tinguished in crisp data, regardless of their position within the block. Thus, for



