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ENGINEERING SOFTWARE



Preface

This book contains an edited version of the papers presented at the First -
International Conference and Exhibition on Engineering Software which was
held at Southampton University in September 1979.

The Conference was devoted to the development and application of engineering
software with applications in Civil, Mechanical, Structural, Electrical, Electronic
and most other branches of engineering. The aim was to provide a forum for the
presentation and discussion of recent advances in engineering software and as
such this book comprises a ‘state of the art’ collection of papers in this
important field.

The impact of computers on the engineering community has created a new
science and industry for the development and production of engineering
software. The extensive use of computer packages for stress analysis, computer-
design of electronic systems, simulation of traffic and water management, etc.,
provide but a few examples of the increased use of engineering software and
new fields are continuously being developed.

The book is divided into sections covering major application areas and some
sections on general techniques. The first session is devoted to certainly the most
widely used analysis method of engineering, the finite element method. Papers
in this section cover finite element systems designed to tackle specialised
problems such as non-linear analysis and more unusually the development of
finite element systems for micro-computers. One of the largest sections is
devoted to engineering software in structures and stress analysis. Applications
vary from off-shore structures, shear walls to the strength of fabrics. Further
sections cover fluid mechanics and water resources, electrical and electronic
engineering, civil engineering and mechanical engineering.

A series of papers on the important subjects of documentation and standards

and software techniques are included in the Software Teéhniques section and a
further multidisciplinary section covers Computer Aided Design Techniques.

The Editor
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A GENERAL PURPOSE TWO-DIMENSIONAL MESH GENERATOR
Schoofs A.J.G., van Beukering L.H.Th.M., Sluiter M.L.C.

Department of Mechanical Engineering
Eindhoven University of Technology, The Netherlands.

INTRODUCTION

Composing and checking input for finite element programs is
very labour intensive; this is particular true for the divi-
sion of the area to be studied into elements. In the past
many programs, called mesh generators, have been developed in
order to automate this job. A survey of these programs is gi-
ven by Buell W.R. and Bush B.E. (1973). This paper deals with
a mesh generator for two-dimensional areas; the principal
characteristics of this mesh generator, named TRIQUAMESH, are:
1. a user oriented input language with debugging aid is pro-
vided; the user will only have to supply simple composable in-
put data.

2. both single and multiple coherent two-dimensional areas
with a complex geometry can be divided into triangular and/or
quadrilateral elements.

3. easy specification of the magnitude of the elements.

4. substructuring facilities have been incorporated.

5. the shape of the generated elements is optimised.

6. the mesh generator has some possibilities to reduce the
bandwidth of the assembled structural matrices.

7. the output of the mesh generator can be used directly as a
part of the input for three finite element programs, including
ASKA and MARC.

After introduction of some basic concepts, the method used in

TRIQUAMESH will be dealt with. Afterwards the use and possibi-
lities of TRIQUAMESH will be illustrated by means of some ex-

amples.

BASIC CONCEPTS

The area to be divided G can be divided into ns subareas G],
55 Gn in order to specify element and material properties
and to"define the substructuring of the area G. It is demanded
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that subareas are simple coherent; n—-fold coherent areas can be
made simple coherent by making at least n-1 cuts. The contour
of an area G is C, subarea Gg_has C_ as contour and the overall
contour of all subareas is C (fig. 1).

(o}

(a) (b)

Figure 1. An arbitrary two—dimensional area (a) and a division
thereof in simple coherent subareas (b).

In G a number of so-called basis points is fixed, by means of
numbers and coordinates. These points w111 supply a basis for
the geometrical description of contour C* and for the determi-
nation of other user wishes, for example the desired element
size. With two or more basis points oriented elementary curves
can be defined, for example straight lines, arcs etc. (fig. 2a).
A contour part (identified by a number) is a non-branched coup-
ling of elementary curves and has an orientation. The geometric
description of the contour part consists of the coupling of
descriptions of the constituent elementary curves (fig. 2b).

6 6
/\ /«
3
3RL4 4CM 6,5 3RL4CM6,5RL7 C, 3, 2

Cy:1,-3
(a) (b) (c)

Figure 2. Description of elementary curves (a), a contour part
(b) and subcontours (c).

Subcontour C_ consists of the coupling in a closed curve of one
or more contour parts. For reasons of univocality, C_is des-
cribed by denoting the numbers of the anti-clockwise”sequence
of joining contour parts. If a contour part is met in a direc-
tion opposite to its orientation, the number of this contour
part is denoted negatively (fig. 2c). A substructure is defined
by one or more subareas. All substructures together form one
structure: the area to be divided G. The concepts mentioned are
hierarchically ordered. The basis points define elementary
curves. These define contourparts etc.:



Basispoints - elementary curves - contourparts -

subareas - substructures + structure.

During the division of area G into elements, use is made of the
roughness function g2(x,y). It is postulated that in G, g2 is
directly proportional to the desired magnitude of the element
sides; the length % of any element side between the points (xl.

yl) and (XZ’ y2) therefore shall have to be '"the best fit
possible':
2= 4{g2(x, y,) + g2(x,, y,) }.RI (1)

The proportional constant RI has the dimension of length and
will be called the standard element side. Equation 1 is the de-
finition of the roughness concept.

DESCRIPTION OF THE METHOD

Globaly TRIQUAMESH has been developed as follows:

1. Checking and manipulation of input data. 4

2. Generation of nodal points on the total contour C .

3. Division of subareas into elements.

4, Post-processing, such as: optimization of element shape,
bandwidth reduction, transformation to elements with more nodal
points and output.

The aspects mentioned above will be described subsequently.

Checking and manipulation of input data

An user-oriented input language has been developed so that the
input can be interpreted simply and elaborate tests for errors
in the input data are possible. The program expects the input
to be delivered by means of punchcards or by means of a file

to be found on a disk-unit. From this input, arrays are deter-
mined which will serve as input parameters for the next steps.
During processing, the input is also checked for syntax and se-
mantic errors. Possible error messages are for instance:

1 TRIAX3 2,5)
* >>>> LEFT PARENTHESIS EXPECTED
* >>>> UNKNOWN SUBAREA

Generation of contour points

The user will have to supply values for the roughness function
g2(x,y) for each of the basis points in area G. Doing so, using
a chosen roughness behgviour along the contour, the roughness
on the total contour C 1is fixed. Starting from this, and to-
gether with the user given gtandard element side RI, the nodal
points to be generated on C will be determined. Because of the
assembly of a subcontour out of contour parts, which in turn
consist of elementary curves, it will only be necessary to ex-
plain the generation of nodal points on an elementary curve.
Consider an elementary curve K with length 2 and curvilinear
coordinate s, 0 < s < 2; for reasons of simplicity a non essen-
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tial simplification to a straight line is made. On curve K a
number of basis points are denoted, numbered locally with j,
j=0,1,...,m, which divide the curve in m pieces, and, by
means of the user given values gk,, a piecewise harmonic rough-
ness function is defined. (fig. 39:

gk.+gk. gk.—-gk. s-s.
gk(s) = JZ J* . 32 3tV eog ;——l:—— . T3 j=0..m (2)

Figure 3. Harmonic roughness function on an elementary curve.

Starting form this function gk(s) nodal points are generated
on curve K, this is done in two steps: first the determination
of the number of nodal points and subsequently the computation
of the correct location. Suppose that n-1 nodal points will
have to be generated (and therefore n element sides) on the
elementary curve (fig. 4).

|

E gki-y } |gk| |
p% _____ HOB! — @ lq
i-1 i n-1 n

| | |

| | |

s [ |

[ ‘

s=0 S=Siy S=S; s=1

Figure 4. Nodal points and element sides on the curve PQ.

From equation 1 for element side i the following can be de-
rived:

S.-S. 85, .8
i 1=l _ i+l i

ghytek; | 8kjy 78Ky
This can be met "as good as possible" for all element sides,
by computing n as follows:

)
ﬁ- . 4 —gk(s) ds (4)

“(1=1,2,...,0-1) (3)

n-=



After which n is rounded off to an integer in a suitable way.
As soon as the curvilinear coordinates s,...s__. are known,
one can easily determine the coordinates in the overall two-
dimensional system.

Generatlgggpf elements in a subarea

A contour is defined by sequentlally connected nodal points on
this contour. The connection is made by straight lines (the
element sides). Every subarea will have to be divided either
in triangles or quadrilaterals, depending upon the user given
element type. The nodal points on contour C_ of subarea G_ are
numbered locally 1 ... ncp (fig. 5). s &

Figure 5. Local numbering of contourpoints on Cs'

Subarea G_ is concave whenever one of the angles enclosed by
the contotr a, > m. Let i and j, where i # j, be nodal p01nts
on C_ such thdt the interconnecting line between i and j lies
compfetely within G . Whilst dividing G into elements such
lines are frequently used, and an instahtanuous check will
have to be made to see whether this line is actually within
G $ for instance the connection between points 8 and 17 in
f1g. 5 is not acceptable. These checks for concave areas are
quite complicated and therefor a concave subarea is split into
two or more convex partial areas, after which these areas
are divided into elements.

Splitting a concave subarea into convex partial areas A nodal
point is called concave if a. > m, (fig. 5). The splitting is
done by the following steps:

1. Take a concave nodal point on the contour; call this point
P. If no such point exists, the area will be convex.

2. Determine the accumulation V1 of nodal points on the contour
which are visible from P.

3. Determine out of V. that nodal point Q in such a way that,
based on given criteria, PQ is the best splitting line.

4. Determine the accumulation V2 of nodal points on the contour
which are visible from Q.

5. Define on PQ a roughness funetion, based on the roughness

values of the nodal points in V] and V2.
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6. Generate, using that roughness function, nodal points on PO.
7. Define two new areas separated by line PQ.

8. Continue with step 1 for both areas.

Exglanatlon Step 1. Point P is chosen to be the most concave
point on the contour or to be the middle point of a series of
almost equally concave points. Steps 2 and 4. The determination
of visible points is illustrated with an example (fig. 6a). Con-
sider a continuous contour; B, is defined as being the angle
between line P-K and the tangent of the contour in P; Fig. 6b
shows Bk as function of curvilinear coordinate s.

Ks K, Bk

(a) (b)

Figure 6. Determination of from P visible points.

Points of interest in the determination of visible points are
those concave points L of the contour where B is a local ex-
tremum; not visible will be:

1. Points K with s s. and B BL if BL is a local maximum;
for example p01ntstetween K and 2

2. Points K with s and B, > BL

for example p01ntstetween K3 and K4.

if BL is a local minimum;

Figure 7. Search for a suitable splitting-line from point P.

Step 3. Consider fig. 7: The point P_‘ an P+l are the neigh-
bouring points of P. The lines PP and PP  divide the visible
area in sectors I, II and III. At first the most suitable point



