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Preface

The quantum groups investigated in this book are quantum enveloping al-
gebras defined by their Drinfeld-Jimbo presentation once a symmetrizable
(generalized) Cartan matrix is specified. This presentation is essentially a
g-deformation or “quantization” of the familiar presentation (by Chevalley
generators and Serre relations) of the universal enveloping algebra of a Kac—
Moody Lie algebra associated with a symmetrizable Cartan matrix. Thus,
one approach to quantum enveloping algebras closely follows the study of
universal enveloping algebras of Lie algebras, the results often amounting to
quantizations of their classical counterparts.

There is a well-known procedure for obtaining symmetrizable Cartan
matrices from finite (possibly valued) graphs. About two decades before the
birth of quantum groups, representations of quivers (i.e., directed graphs)
were introduced and developed as part of both a new approach to the rep-
resentation theory of finite dimensional algebras and a method to deal with
problems in linear algebra. P. Gabriel [118] showed, for example, that if the
underlying graph of a quiver is a (simply laced) Dynkin graph, then the inde-
composable representations correspond naturally to the positive roots of the
finite dimensional complex semisimple Lie algebra associated with the same
Dynkin graph. Over a decade later, V. Kac [170] generalized Gabriel’s result
to an arbitrary quiver, obtaining a one-to-one correspondence between the
positive real roots of the associated Lie algebra and certain indecomposable
quiver representations, as well as a one-to-many correspondence from the
positive imaginary roots to the remaining indecomposable representations.
Thus, an essential feature of the structure of a symmetrizable Kac—Moody
Lie algebra — namely, its root space decomposition — has an interpretation
in terms of representations of finite dimensional algebras.

xiii
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The birth of quantum groups in the 1980s provided an opportunity for
quantizing and deepening the finite dimensional algebra results described
above. In 1990, C. M. Ringel [247] introduced an algebra, which he called
the Hall algebra, but which is now commonly known as the Ringel-Hall
algebra, associated with the representation category of a finite dimensional
algebra over the finite field Fy. In this work, Ringel established some fun-
damental relations that turned out to be specializations of the modified
quantum Serre relations. Ringel then proved, in the finite type case, that
the structure constants of the Ringel-Hall algebra are polynomials in g; the
resulting generic Ringel-Hall algebra is isomorphic to the “positive part” of
the corresponding quantum enveloping algebra.

With this breakthrough in the realization of quantum enveloping al-
gebras of finite type, the development of the theory reached a new level.
First, the geometric approach (via the theory of perverse sheaves) was in-
troduced by G. Lusztig [206]. He obtained not only a geometric realization
of the +-parts of quantum enveloping algebras associated with symmetriz-
able Cartan matrices but also canonical bases for these algebras and their
representations as an application. Second, J. A. Green [136] established
a comultiplication formula for Ringel-Hall algebras of hereditary algebras
and extended Ringel’s algebraic realization to arbitrary types. Thus, the
Gabriel-Kac work at the root system — or skeletal — level can be thought
of as having been extended to an actual construction of the full quantum
enveloping algebra. Beyond the theory of Ringel-Hall algebras, other devel-
opments include Nakajima’s quiver varieties [229] and the realization of all
symmetrizable Kac-Moody Lie algebras by L. Peng and J. Xiao [238].

At almost the same time as Ringel’s work on Hall algebras, A. Beilinson,
G. Lusztig, and R. MacPherson investigated a class of finite dimensional al-
gebras, known as quantum Schur algebras, which they used to give a realiza-
tion of the entire quantum enveloping algebras in the important case of type
A, i.e., associated with the general linear Lie algebras gl,,. This work thus
provided another finite dimensional algebra approach to quantum envelop-
ing algebras, completely different from the theory of Ringel-Hall algebras.
However, the multiplication formulas that played a key role in this approach
result from an analysis of quantum Schur algebras over finite fields, using
the geometry of flags on a finite dimensional vector space. A stabilization
property derived from the multiplication formula permits the definition of
an infinite dimensional algebra as a “limit” of all quantum Schur algebras.
In turn, this algebra has a completion that naturally contains the quantum
enveloping algebra as a subalgebra. As a bonus, this method leads to an
explicit basis, called the BLM basis, for the entire quantum enveloping al-
gebra, and it yields explicit multiplication formulas for any basis element
by a generator. It has been proved by J. Du and B. Parshall [104] that
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a triangular part of the BLM basis coincides with the Ringel-Hall algebra
basis.

This book provides an introduction to the two algebraic approaches
briefly described above, with an emphasis on the structure and realization
of quantum enveloping algebras. The treatment is largely elementary and
combinatorial. In so far as possible, we have written the book to be acces-
sible to graduate students and to mathematicians who are not experts in
the field. Apart from some standard material (e.g., [BAII], [LAII]), our
treatment is entirely self-contained with two notable exceptions: a positivity
result for Hecke algebras (in Chapter 7), which requires the use of perverse
sheaves, and a theorem of Lusztig used in the proof of Green’s theorem (in
Chapter 12), which requires the representation theory of Kac-Moody Lie
algebras. For the more advanced geometric approach using the theory of
perverse sheaves, see Lusztig’s book [209].

Although the present book centers on the finite dimensional algebra ap-
proach to quantum groups, it also takes up two other, important, related
topics. First, following [59], we use Frobenius morphisms on algebras to link
representations of a quiver directly to representations of a species (called a
modulated quiver in this book) without specifically working with the species.
In the language of Lie theory, a quiver determines a symmetric generalized
Cartan matrix, while a species corresponds to a symmetrizable one. As Car-
tan matrices, these two cases are linked by a graph automorphism. A quiver
automorphism (i.e., a graph automorphism preserving arrows) gives rise
naturally to a Frobenius morphism on the path algebra of the quiver whose
fixed-point algebra can be interpreted as the tensor algebra of a species.
Thus, the Ringel-Hall algebras associated with the representation categories
of quivers with automorphisms cover all the quantum enveloping algebras
associated with symmetrizable Kac-Moody Lie algebras.

The second related topic is the Kazhdan-Lusztig theory for (Iwahori-)
Hecke algebras and cells. Playing an important role in Chevalley group
theory [159], Hecke algebras are quantum deformations of group algebras
of Coxeter groups. In 1979, D. Kazhdan and G. Lusztig [177] discovered
a remarkable basis for a Hecke algebra, known as the Kazhdan—Lusztig or
canonical basis, which has important applications in the representation the-
ory of Hecke algebras, algebraic groups, finite groups of Lie type, and quan-
tum groups. We use the same idea in the construction of canonical bases
for quantum enveloping algebras of finite type in Chapter 11. As a notewor-
thy crown to the whole theory, we present the modern cell approach to the
representations of symmetric groups and the structure of quantum Schur
algebras. The latter is fundamental in the BLM approach to the realization
of the entire quantum enveloping algebra of gl,,.
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The book consists of 14 chapters arranged in 5 parts, complemented by
a leading Chapter 0 — that outlines the main features of the book — as
well as three appendices. Chapter 0 begins with the two realizations of Car-
tan matrices: the graph realization and the root datum realization, which
lead up to the theories of quiver representations and quantum enveloping
algebras, respectively. The main objects discussed in the book are certain
algebraic structures — Coxeter groups, associative and Lie algebras, etc. —
which are often presented with generators and relations. We set down in
§0.2 the relevant notations for presentations. When an algebraic structure
is presented by generators and relations, the immediate question arises of a
description in some concrete way. For example, Coxeter groups are defined
by means of a presentation, but, as J. Tits has shown, have an elegant ex-
plicit description as “reflection groups.” (See §4.1.) In general, this question
is the so-called realization problem. In this book, our main focus will be the
two beautiful realizations of quantum enveloping algebras. However, as a
first taste, we discuss the problem through some relatively simple examples
in §0.3 and §0.6. In §0.4, the so-called quantumization process is introduced
to explain the phenomenon that counting over finite fields often leads to
certain generic objects over a polynomial ring. We shall see that Hecke al-
gebras, quantum Schur algebras, and Ringel-Hall algebras of finite type can
all be produced through this process. Finally, as one of the main topics in
the book, the crude model of the canonical basis theory, i.e., the elementary
matrix construction of canonical bases, is discussed in §0.5.

Part 1 (Chapters 1-3) presents the theory of finite dimensional alge-
bras, with an emphasis on representations of quivers with automorphisms.
Chapter 1 begins with the basics of quiver representations and proves the
theorem of Gabriel mentioned earlier using Bernstein—Gelfand—Ponomarev
(BGP) reflection functors. It also lays out the relations between quivers,
Euler forms, root systems, Weyl groups, and representation varieties.

Chapter 2 treats the general theory of representations of algebras with
Frobenius morphisms. A Frobenius morphism F on a finite dimensional
algebra A defined over the algebraic closure X of the finite field F, is a
ring automorphism satisfying F'(Aa) = Aa, for all A € K and a € A. It
induces a functor on the category of finite dimensional A-modules, called the
Frobenius twist functor. If the Frobenius twist of a module is isomorphic
to itself, then the module is called an F-stable module. We show that
the subcategory of F-stable modules with morphisms compatible with F'-
stability is equivalent to the module category of the F-fixed point algebra
AF. Thus, the determination of indecomposable A¥-modules is equivalent
to that of indecomposable F-stable modules. Additionally, this method
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provides a relation between almost split sequences for A¥-modules and A-
modules in the Auslander—Reiten theory. In preparation for those results,
Chapter 2 contains a brief and self-contained introduction to almost split
sequences and irreducible morphisms.

In Chapter 3, we apply the general theory to the path algebra A of a
quiver () with automorphism o. If F' is the Frobenius morphism on A in-
duced from o, the F-fixed point algebra AF is a hereditary algebra over
the finite field F, and is the tensor algebra of the species associated with
(Q,0). Up to Morita equivalence, every finite hereditary algebra arises in
this way. We further extend the folding relation associated with the quiver
automorphism to a folding relation between the Auslander-Reiten quivers of
A and AF. Finally, we study representations of affine quivers with automor-
phisms and describe their Frobenius twists explicitly as an example of the
applications of the theory. The formulas for the number of indecomposable
representations of the associated F-fixed point algebra are also presented.

Part 2 (Chapters 4-6) constructs, via generators and relations, the alge-
bras that play an important role throughout the book. It opens in Chapter
4 with the basic theory of Coxeter groups. Symmetric groups and affine
Weyl groups provide important examples, which we look at in some detail.
A modification of the defining relations for a Coxeter group leads naturally
to the construction of the associated Hecke algebra, the properties of which
are also rather fully explored. Chapter 4 concludes with a further example
showing that Hecke algebras for the symmetric groups arise in a quantumiza-
tion process that starts with the endomorphism algebra of the complete flag
variety of a finite general linear group.

Chapter 5 begins with a brief tour of the basics of Hopf algebras. It
continues with the fundamental example of universal enveloping algebras,
emphasizing Kac-Moody Lie algebras and their symmetry structure. These
results serve as a template for quantum enveloping algebras. The chapter
ends with a discussion of the simplest quantum enveloping algebra, quantum
5[2.

Chapter 6 is devoted to quantum enveloping algebras — defined by
means of the Drinfeld-Jimbo presentation — associated with symmetriz-
able Cartan matrices. There, we first show that these algebras are infinite
dimensional and carry Hopf algebra structures. Actions of suitable braid
groups on these algebras lead to the definition of root vectors for arbitrary
roots as well as to the construction of PBW-type bases in the finite type
case.

Part 3 (Chapters 7-9) presents a modern approach to the ordinary rep-
resentation theory of symmetric groups and the associated Hecke algebras.
Chapter 7 is concerned with the combinatorial part of Kazhdan—Lusztig
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theory — the calculus of Hecke algebras and cells. After introducing the
canonical bases for Hecke algebras, we develop Kazhdan—Lusztig polynomi-
als, dual bases, inverse Kazhdan—Lusztig polynomials, and Knuth, cell, and
Vogan equivalence relations. We prove that the Knuth equivalence is finer
than the left cell equivalence which is, in turn, finer than Vogan equiva-
lence. We conclude with a brief explanation of the geometric meaning of
the Kazhdan-Lusztig polynomials, including the positivity property and its
applications.

Chapter 8 explicitly determines the cells for the symmetric groups and
constructs the simple representations of symmetric groups and their associ-
ated Hecke algebras. A main tool is the Robinson—Schensted algorithm. For
later application to quantum Schur algebras, we adopt a generalized version,
known as the Robinson-Schensted—Knuth (RSK) correspondence which as-
sociates with each square matrix over N a pair of semistandard tableaux
— the insertion tableau and the recording tableau. Given two elements in
a symmetric group, if they are Vogan equivalent, then they have the same
recording tableau; hence, they are Knuth equivalent. This completes the
decomposition of a symmetric group into left (or right) cells. As a further
application of the positivity property, we introduce the asymptotic Hecke
algebras and an Artin-Wedderburn decomposition for the type A Hecke
algebras.

Chapter 9 takes up the Kazhdan—Lusztig calculus for quantum Schur
algebras, or g-Schur algebras, as a natural extension of the theory of Hecke
algebras. Beginning with the Dipper-James definition of a quantum Schur
algebra as the endomorphism algebra of tensor space, we immediately estab-
lish its integral quasi-heredity by showing the existence of a Specht datum in
the sense of [106]. We then construct canonical bases for these algebras as a
natural extension of the counterpart for Hecke algebras. These bases are, in
fact, cellular bases in the sense of Graham-Lehrer [134] and can be used to
establish the integral quasi-hereditary property for quantum Schur algebras.
In addition, the duality between Specht and A-filtrations is discussed, and
tilting module theory is developed. As an application, we establish the inte-
gral double centralizer property which will be further extended in Chapter
14 to the integral quantum Schur-Weyl reciprocity.

Part 4 (Chapters 10-12) presents Ringel’s Hall algebra approach to quan-
tum enveloping algebras. The story begins in Chapter 10 with the basic
definition of the (integral) Hall algebra of a finitely generated algebra over a
finite field. We establish that Hall algebras satisfy certain fundamental re-
lations. These become the quantum Serre relations in a, Ringel-Hall algebra
which is defined in this book as the twisted Hall algebra associated with a
quiver with automorphism (and a finite field). It turns out that there is a
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surjective algebra homomorphism from a triangular part of a quantum en-
veloping algebra to the generic composition algebra associated with a quiver
with automorphism. In the Dynkin quiver case, the existence of Hall poly-
nomials provides a direct definition of the generic Ringel-Hall algebra. In
this case, a dimension comparison shows that the algebra homomorphism
above is an isomorphism.

Chapter 11 focuses on Ringel-Hall algebras of Dynkin quivers with au-
tomorphisms and the construction of bases for the corresponding quantum
enveloping algebras of finite type. Starting from a monoid structure and a
poset structure on the set of isomorphism classes of representations, we first
obtain a systematic construction of monomial bases for quantum enveloping
algebras. We then show that BGP reflection functors induce certain isomor-
phisms of the subalgebras of Ringel-Hall algebras, which are the restrictions
of the Lusztig symmetries defined in Chapter 6. This gives a construction
of PBW-type bases, which was mentioned in Chapter 6 without proof. Fi-
nally, by relating monomial and PBW-type bases, we present an elementary
algebraic construction of Lusztig canonical bases for quantum enveloping
algebras of finite type.

Chapter 12 deals with a comultiplication defined by Green [136] on the
Ringel-Hall algebras. The compatibility of multiplication and comultipli-
cation is based on what is called Green’s formula. This result, together
with a theorem of Lusztig, shows that the surjective algebra homomorphism
defined in Chapter 10 is actually an isomorphism. Hence, the Ringel-Hall
algebras provide a realization of the triangular parts of all quantum envelop-
ing algebras.

Part 5 (Chapters 13-14) gives a full account of the Beilinson—Lusztig—
MacPherson (BLM) construction for the quantum enveloping algebra asso-
ciated with gl,,. Chapter 13 derives in an elementary geometric setting some
fundamental multiplication formulas for the natural basis elements in quan-
tum Schur algebras. This leads to a new basis for a quantum Schur algebra
— the BLM basis — and to the derivation of some multiplication formulas
among the new basis elements. The quantum Serre relations in a quantum
Schur algebra result from these multiplication formulas. As a byproduct, a
certain monomial basis, which is triangularly related to the natural basis, is
constructed in order to give a presentation of a quantum Schur algebra.

Finally, in Chapter 14, a further analysis of the fundamental multipli-
cation formulas gives a stabilization property. This prompts the definition
of the BLM algebra K — an infinite dimensional algebra without identity
— and some modified fundamental multiplication formulas. By taking a
completion of K, we obtain an algebra K with identity and derive some
multiplication formulas from the modified ones. With these formulas, we
prove that a certain subspace V of K is a subalgebra with quantum Serre
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relations. We then prove the isomorphism between V and the entire quan-
tum gl,, before closing with the establishment of the integral Schur—-Weyl
reciprocity. This basic result is obtained by combining the double central-
izer property with the surjection from a type of integral Lusztig form to the
integral quantum Schur algebras.

In addition to the chapters described above, this book contains three
chapter-long appendices. Appendix A outlines basic ideas from algebraic
geometry and algebraic group theory that are required in the book and
concludes with a brief discussion of some more advanced topics in the rep-
resentation theory of semisimple groups. Appendix B gives a largely self-
contained discussion of quantum matrix spaces and quantum general linear
groups — both including standard and multiparametered — and ties them
with the theory of quantum Schur algebras given in Chapter 9. Finally,
Appendix C provides a short and self-contained account of the theories of
quasi-hereditary algebras and cellular algebras which are needed in Part
3. Making use of the results in Appendices B and C, we discuss several
of the standard examples of quasi-hereditary algebras and highest weight
categories that arise in representation theory.

*x ok K

As evidenced by the bibliography, this book clearly could not have been
written without the work of the many mathematicians who have contributed
over the years to this evolving theory. It also draws, at a number of critical
points, from previous book-length treatments. For example, Chapters 4
and 6 reflect the influence of Humphreys [157], Carter [35, 36], Jantzen
[165], and Lusztig [209, 213], while Chapter 8 incorporates and builds on
Stanley’s development of the Robinson—Schensted—Knuth correspondence in
[281]. The Notes at the end of each chapter record our indebtedness to this
and other work and form a critical part of our exposition.

Each chapter also closes with a series of exercises, some of which are
routine, some of which serve to fill in steps in the various arguments, and
some of which call attention to the literature by sketching proofs of results
to be found there.

Despite its length, there are many important topics that have not been
included in this book. The chosen material reflects our own interests and
forms what we hope is a coherent whole. Other topics are sometimes briefly
mentioned in the Notes (and references).

LA S ¢

Historical notes and acknowledgments: Although the theoretical
interrelations between the representation theory of finite dimensional alge-
bras and Lie theory date at least to the 1970s, the interrelations between
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finite dimensional algebras and the representation theory of Lie algebras and
algebraic groups became truly apparent at the Ottawa—Moosonee Algebra
Workshop in 1987. First, Claus Ringel presented his ideas, which led to the
development of Ringel-Hall algebras as realizations of the +-parts of quan-
tum enveloping algebras. Second, the third author of the book and Leonard
Scott presented their discovery (with Edward Cline) of quasi-hereditary al-
gebras and highest weight categories. Since then a number of conferences
touching on the same theme have been held in Ottawa (1992), Shanghai
(1998), Kunming (2001), Toronto (2002), Chengdu and Banff (2004), and
Lhasa (2007). The authors would like to thank the organizers of these
conferences for the opportunity to observe and participate in the exciting
developments in this area. The idea to write a book originated with the
second and third authors 15 years ago at the Ottawa meeting. Then the
last three authors made an early effort in this direction, but as the project
has evolved and the subject matter developed, the first author became a
member of the team.

In writing this book, we have profited from comments on several chapters
by a number of graduate students, among them, Liping Wang at Chinese
Academy of Sciences; Jiangrong Chen, Lingyan Guo, Baolin Xiong, Guiyu
Yang, Jie Zhang, and Zhonghua Zhao at Beijing Normal University; and Wes
Cramer, Chris Drupieski, and Jill Tysse at the University of Virginia. We
are also grateful to colleagues Qiang Fu (Tongji University), Terrell Hodge
(Western Michigan University), Paramasamy Karuppuchamy (University of
Virginia), Chi Mak (University of New South Wales), and Hebing Rui (East
China Normal University) for critiquing parts of the book. We thank Karen
Parshall (University of Virginia) for reading the entire manuscript and mak-
ing many helpful suggestions. Ms. Jing Yu provided secretarial support on
an early version. We extend special thanks to Xiaoming Yu (University of
Virginia) for special assistance over the years. Last, but certainly not least,
we thank Leonard Scott for his friendship and collaboration over many years.
Some of the results in Part 3 were discovered in collaboration by the second
and third authors with him.

We acknowledge here the Department of Mathematics at East China
Normal University, the School of Mathematics and Statistics at the Uni-
versity of New South Wales, and the Department of Mathematics at the
University of Virginia for providing resources that enabled the authors to
work collaboratively. We also thank our respective funding agencies for
their financial help throughout this project: the Australian Research Coun-
cil (Du), the National Science Foundation (Parshall), the Chinese National
Natural Science Foundation (Deng and Wang), and the Shanghai Municipal
Science Foundation (Wang).
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The American Mathematical Society provided us with four anonymous
referee reports on a preliminary version of the book. We thank these (un-
known to us) mathematicians for their many useful comments. Finally, we
heartily thank E. Dunne and his staff at the AMS publications office for
their patience and help during the completion of this project.

Bangming Deng
Jie Du

Brian Parshall
Jianpan Wang

Charlottesville
December 4, 2007



Notational conventions

We adopt the following conventional notation:

C field of complex numbers

F, finite field with ¢ elements, ¢ (# 1) being a prime power
(thus, by a prime power we always mean a prime to
a positive integer power)

N set of nonnegative integers 0,1, 2, ...

Q field of rational numbers

R field of real numbers

Z ring of integers

Z set of positive integers 1,2, ...

A ground field or (commutative) ring over which algebras and representa-
tions are defined is usually written in Zapf Chancery fonts. In particular,
we use the following notation throughout the book:

K, X ground fields, with K often algebraically closed

R a (commutative) ground ring

Z := Z[v,v~!] | the ring of Laurent polynomials over Z in an
indeterminate v

Aa := Z[q], where q = v?

We also make the following conventions:

e A C B means A is a subset of B, while A C B means A is a proper
subset of B; and

xxiii
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e for a module M over a ring, nM, where n € N, stands for the direct
sum of n copies of M, i.e.,
nM=M&--- &M,
n
with the exceptions that
— a free module of rank n over the ground ring & is denoted by
R" e.g., R" C" Z", etc.; and
— Muxn(K) denotes the space of m x n matrices over K, and,
if m = n, this space is simply denoted My (K). (The nota-
tion M, (—) is also used over other rings or their subsets, e.g.,
M, (D), for a division ring D, or My (N).)



