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DIFFERENTIAL EQUATIONS



PREFACE

This second edition follows the use of the book as a text for
more than twenty years, and this experience has guided the
revision. Many parts have been rewritten and rearranged in
the interests of a clearer presentation, a smoother and more
natural approach, and a more teachable body of material.
More exercises have been worked out as a guide to the student.
Numerous additions to the lists of problems include many
simple exercises as well as those which challenge the student’s
ability and insight. In response to a persistent demand a set
of review exercises has been put at the end of Chap. 2. A
complete set of answers has been included in the book.

The strictly new subject matter has, for the most part, been
often used by the author as supplementary material: Riccati’s
equation, elastic vibrations, planetary motion, and, at the end
of the book, the simple numerical methods which are used in
the approximate solution of Laplace’s equation. There have
also been added several pages on the Laplace transform,
designed to give the student some acquaintance with this
popular tool.

LesTeEr R. ForD



A SHORT COURSE

The following sections are suggested for a one-semester
course of four hours. With some variations this material has
stood the test of long experience. The basic theory and the
chief applications covered are: (1) an introduction to differ-
ential equations and various elementary applications; (2) the
highly useful linear equations; (3) a classical equation in the
complex domain; (4) an existence theorem; (5) the partial
differential equation of the vibrating string; (6) a treatment
of planetary motion.

For a still shorter course the instructor must sacrifice some
of these materials. For a three-hour course the author sug-
gests the omission of some of the starred items.

The book is rich in materials for special assignments to
able students and in intriguing problems.

Chap. 1: 1-13, 15-17.
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CHAPTER 1

INTRODUCTION TO DIFFERENTIAL EQUATIONS

1-1. Differential Equations. An equation
2 n
f(x WY ... dy>=o (1-1)

U @ de? " dar

involving a function y(z) and certain of its derivatives is called a differen-
ttal equation.

By the order of a differential equation is meant the order of the highest
derivative which appears. Thus the differential equations

5= %? (1-2)
@y d
d_xzj - d—z =0 (1-3)
and
dz d
d—t2§—3£+23=t2 (1-4)

are of the first, third, and second orders, respectively.

The study of differential equations is important because of the fre-
quency with which they arise in the applications of mathematics to sci-
entific problems. The student has already found in his study of the
calculus that the derivative appears in a great variety of problems—as
the slope of a curve, as a velocity or acceleration in the study of motion,
as the rate of change of some function in a great many connections.
Now, in the exact sciences a vast number of problems arise in which the
quantity whose value is sought is known only through some relation sat-
isfied by its derivative. Thus the velocity or acceleration of a moving
body may be known and the distance traveled in a given time required;
or the rate at which a quantity is increasing or decreasing may be given
and the magnitude of the quantity itself be sought. In such cases the
conditions of the problem supply us with a differential equation satisfied
by the unknown function, and we are faced with the problem of finding
what the function is. The process of finding the function that satisfies

a differential equation is called solving the equation.
1



2 DIFFERENTIAL EQUATIONS

The differential equations at the beginning of this section are of a par-
ticular kind. Each contains one independent variable and one depend-
ent variable (or function). More generally, a differential equation is an
equation connecting certain independent variables, certain functions (depend-
ent variables) of these variables, and certain derivatives of these functions with
respect to the independent variables. Differential equations are divided into
classes according as there are one or more independent variables.

If there is a single independent variable, so that the derivatives are
ordinary derivatives, the equation is called an ordinary differential
equation.

If there are two or more independent variables, so that the derivatives
are partial derivatives, the equation is called a partial differential equa-
tion. Thus

9% 0z

a2 oy
is a partial differential equation. Here 2, the dependent variable, is a
function of the two independent variables x and .

In later chapters we shall consider simultaneous equations in which
there are two or more dependent variables satisfying two or more differ-
ential equations. For example, it might be proposed to find two func-
tions, x(f) and y(¢), satisfying the equations

d—x=2y+:c %J—=3y+4:c

In the early part of our study, however, we shall be concerned with a
single equation with one dependent variable. We shall begin with the
simplest case, the equation of the first order. This equation, when
solved for the derivative, appears in the form

dy _ .

1-2. Solutions of Differential Equations. A relation y = g(x) is a

solution or integral of (1-1) if
fleg@),y' @), . .. g»@]=0

that is, y is such a funetion of x that if y and its derivatives be expressed
in terms of z and substituted into the differential equation, the equation
is identically satisfied. Thusy = z* 4+ 2z + 2 is a solution of (1-2), for
on making the substitution we have 22 + 2 = z? 4+ 2z 4+ 2 — 22, which
holds for all values of . Similarly, y = e* is an integral of (1-3), for on
substituting in (1-3) we have the identity ¢ — e = 0.

It is frequently neither convenient nor desirable to express the depend-
ent variable in terms of the independent variable. An implicit relation,



INTRODUCTION T0O DIFFERENTIAL EQUATIONS 3

F(z,y) = 0, is a solution, if when solved explicitly for y in terms of z, it
vields a solution in the way described above. Ilowever, the implicit
relation can be differentiated and the derivatives found in terms of x and
y and tested by substitution in the differential equation without the
necessity of solving explicitly. A test can thus be made when it is diffi-
cult or altogether impossible to solve for y in terms of z. For example,
let us show that

z? = 2y? log y
is a solution of the differential equation

dy _  xy

dv — 2+ y°

Differentiating the proposed solution, we have

20 = (2y + 4y log ¥) g'%

Solving for dy/dx and replacing log y by its value, 22/2y?,
dy x x xy

de y+ 2ylogy y +af_/2 2% + y?
The differential equation is satisfied.

By differentiating and substituting in the differential equation we can
test whether a given relation is a solution of a given differential equation,
but we have as yet no clue as to how the solution is found. A consider-
able part of our further study will consist in devising methods of finding
solutions of particular classes of equations.

The student has already had practice in solving differential equations
of a particularly simple form. The problem of integration is to find a
function whose derivative is a given function of the independent variable

The most general solution of this differential equation is
y = (@) dz + C
where C is an arbitrary constant.
We shall now consider a simple problem in which a method of solution
readily occurs to us.

Problem. The function e has the property that the derivative is equal to the
function. Find the most general function with this property.

Let y be the function; then the required property is expressed by the differential
equation

dy _
L=y (1-5)



4 DIFFERENTIAL EQUATIONS

One solution of this is obviously ¥ = 0. If y # 0, we can divide by y and put the
equation in the form

The first member is the differential of log v or log (—v), according as y is positive
or negative; and the second is the differential of . Since two functions whose differ-
entials are equal differ at most by a constant, we have, integrating,

log (ty) =z + C
or
y= iez+0

where C is an arbitrary constant. This value of y, together with y = 0, gives all
functions with the required property.
We can put the result in a different form by setting

+e€ = K
thus changing the form of the constant. Then
y = Ke® (1-6)

1-3. First Method of Solution. Variables Separable. The solution
of the preceding problem was effected by writing the equation in two
terms, one of which is a function of x alone, the other a function of y
alone, from which an integration gave the solution at once. If a differen-
tial equation can be written in the form

M(z)de + N@)dy =0 (1-7)

where, as the notation indicates, M is a function of = alone and N a funec-
tion of y alone, the solution is

M) dz + [N@) dy = C (1-8)

where C is an arbitrary constant. The problem is then reduced to the
problem of evaluating the two integrals in (1-8). In Eq. (1-7) we say
that the variables are separated.

It is clear that we can separate the variables in only a limited class of
differential equations. It happens, however, that in many of the sim-
pler equations met with in the applications of mathematics the variables
can be separated, so that the method is one of importance.

Ezxample. Solve the equation

8 _ . B
dz  y 1=
Separating the variables,

d - =0
yay Vi
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Integrating,

W VI—@=C

+21 —a2=¢C ¢ =2C

1-4. Arbitrary Constants. The number of solutions of Eq. (1-7) is
infinite, since C in (1-8) may be given any value. The infinitude of its
solutions is characteristic of a differential equation. In the process of
solution of a differential equation of the first order there comes a step by
which the differentials or derivatives are removed by an integration, and
this integration introduces an arbitrary constant.! The solution con-
taining this arbitrary constant is called the general solution of the equa-
tion. A solution which results from giving a particular value to the
arbitrary constant is called a particular solution. Thus y = 3er and
y = —2¢® are particular solutions of (1-5).

By saying that a constant is arbitrary we mean that it can be given
any value within a certain range of values. Frequently any value what-
ever may be given the constant; sometimes only a limited range of values
will yield real solutions. For example, in y = Cz, C may have any value;
in 2 4+ y2 = C only positive values of C give y as a real function of z.
In simplifying the solution of a differential equation it is advantageous
to replace a function of an arbitrary constant by a new constant since
the function is itself an arbitrary constant. Thus, in the solution of
(1-5) we replaced +e¢ by the simpler constant K.

In general, a function of one or more arbitrary constants is itself an
arbitrary constant. An expression may have more apparent arbitrary
constants than essential ones, for we may be able to replace the constants
that appear by a smaller number. For example, y = Ke*t¢ is a solution
of (1-5) with two constants, but if we replace Ke¢ by the new constant
C’, we have y = C’e® in which there is a single constant. Again

y=a>+ A+ B

is no more general than y = z* + C, for to give arbitrary values to 4
and B is equivalent to giving arbitrary values to C. A less obvious case
is the equation

or

2yt + Cie?y? 4+ Coy + C3 =0
which contains three constants. But this is a cubic equation in zy whose
solution is some function of the coefficients

Y = f(01}02;03)
and this can be written in the equally general form
zy = C

! The presence of an arbitrary constant in the solution will be given a rigorous
demonstration later.
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It will be found that an equation of the nth order has a solution con-
taining n essential arbitrary constants. Such a solution will be called a
general solution. A solution obtained by giving particular values to the
constants is a particular solution.

1-5. Solutions Satisfying Specified Conditions. Owing to the presence
of the arbitrary constant in the general solution of the differential equa-
tion of the first order, we are able to make the solution satisfy one con-
dition by particularizing the constant. The commonest form of the con-
dition is that the dependent variable shall have a specified value for a
given value of the independent variable. This condition is satisfied by
substituting the given values in the general solution and solving for the
constant. Thus the solution of (1-5) such that y = 1 when z = 0 is
found by setting + = 0, ¥ = 1 in the general solution (1-6),

1=K
whence

y=e
is the solution with the required property.

A condition to be satisfied by the solution may appear in various other
ways. For example, find a solution of (1-5) such that y has a value 1
greater at # = 1 than it has at x = 0. This gives, substituting in (1-6),

Ke=K+1 o K=-—1.
e —1
The solution is
p— el
4= =1

The method of procedure in any case is to express the required condi-
tion as an equation in which the arbitrary constant appears. From this
equation the value of the constant is determined. Sometimes, of course,
no value of the constant will satisfy the equation, in which case there is
no solution with the required property. Sometimes, also, several values
of the constant are determined, and there are several solutions with the
required property.

1-6. Velocities. Velocities, and rates of change generally, are deriv-
atives. Let an object be moving along a path. At time ¢ let its distance
from a fixed point O of the path, measured along the path, be s (see
Fig. 8). By convention s will be positive on one side of O and negative
on the other. At time ¢ + At¢ let its distance be s + As. The average
velocity for this period of time Af is As/A¢t. The instantaneous velocity
v at time ¢ is the limit of this ratio,

v-—@
T dt
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If v is positive, the object is moving as ¢ inereases in the direction of
the positive end of the path; if negative, the motion is in the opposite
direction.

Suppose that the velocity is given in terms of s, or ¢, or both. We
have then a differential equation whose solution—a relation between s
and —will enable us to locate the object at a given time. An example
will make the matter clear.

Problem. 1 live on a straight road 6 miles due north of school and I leave home
going south at a speed of 30 miles an hour. If my velocity is proportional to the
square of my distance from school, find my motion. When, if ever, will T reach school?

Let s be my distance from school ¢ hr after I leave home, distances north from school
being considered positive. We are given that

ds N
v = a = ks
The factor of proportionality % is determined by the knowledge that » = —30 when
s =6,
30 =36k k= —0
N 6

The differential equation of the motion is then

ds _ _5
a6

We solve this by separating variables,

whence, integrating,

When t = 0, s = 6, whence C = . We have, finally

g =08
S B+ 1
This gives my precise position at any time.

Since no value of ¢ will give s = 0, the school is never reached.

EXERCISES

Solve the problem of the journey to school under the following six hypotheses
about the velocity, the other conditions remaining the same.

1. The velocity is proportional to the distance from school.

2. The velocity is proportional to the square root of the distance from school.

3. The velocity is inversely proportional to the distance from school.

4. The velocity is proportional to the distance from a tower 4 miles south of school.

6. The velocity is proportional to the square of the distance from the tower.



