Advanced
Dynamic-System
Simulation

Model Replication and Monte Carlo Studies

B e o e o, Y T S e e e R e e e 1
I |

— il

EGranino A Korn !

SECOND EDITION

ADVANCED
DYNAMIC-SYSTEM
SIMULATION

Model Replication and
Monte Carlo Studies

GRANINO A. KORN

University of Arizona

)WILEY

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2013 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400,

fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission
should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken,
NJ 07030, (201) 748-601 1, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be suitable
for your situation. You should consult with a professional where appropriate. Neither the publisher nor
author shall be liable for any loss of profit or any other commercial damages, including but not limited to
special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at (317)
572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats, Some content that appears in print may
not be available in electronic formats. For more information about Wiley products, visit our web site at
www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Korn, Granino A. (Granino Arthur), 1922—
Advanced dynamic-system simulation : model replication and Monte Carlo studies / by Granino A.
Korn. — Second edition.
pages cm
Includes bibliographical references.
ISBN 978-1-118-39735-0 (hardback)
1. System analysis—Simulation methods. 2. Open source software. 3. Computer
software—Development. L Title.
QA402.K665 2013
003".85-dc23
2012034771

Printed in the United States of America

10987654321

PREFACE

Simulation is experimentation with models. In this book we describe efficient inter-
active computer programs that model dynamic systems such as control systems,
aerospace vehicles, and biological systems. Simulation studies can involve many
hundreds of model changes, so programs must be fast and user-friendly.

For hands-on experiments with each program example, the book CD now
includes industrial-strength open-source simulation software for both Windows™
and Linux, not just toy demonstration programs. The Desire modeling/simulation pro-
gram implements very fast and respectably large simulations on personal computers.
Runtime-compiled programs display results immediately to permit true interactive
modeling.

A readable mathematical notation, for example,

x=234 | alpha=0
d/dtx = -x*cos(w*t) +2.22*a*x
Vectory=A*x+B*u

lets readers try different parameter values without learning details of the programming
language. Note that one can read ebook pages and run live simulations on the same
computer display.

In Chapter 1 we introduce our subject with a few familiar differential-equation
models and a small guided-missile simulation. The remainder of the book presents
more advanced topics; most of our example programs were rewritten to clarify the
modeling technique and to increase computing speed.

Chapter 2 begins with a newly revised systematic procedure for programming
difference equations and applies this to model plants with digital controllers. We then
discuss limiters and switches and model useful devices such as track/hold circuits,
trigger circuits, and signal generators with simple difference equations. Last but
not least, we propose a simplified technique for numerical integration of switched
variables.

Advanced simulation programs must handle differential and difference equa-
tions with vector and matrix assignments. In Chapter 3 we introduce runtime vector
compilation. This speeds up conventional vector and matrix operations, but more
significantly, personal computers can now implement model replication (vectoriza-
tion), a technique originally developed for supercomputers. A single vector-model
run replaces hundreds or thousands of conventional simulation runs. Chapter 3 also
demonstrates the convenience of user-defined submodels.

In the remaining chapters we describe applications of vectorization. In Chap-
ter 4 we discuss parameter-influence studies and introduce vectorized statistics

xiii

XiV PREFACE

computation, including rapid estimation of probability densities. We then introduce
Monte Carlo simulation of random processes. In Chapter 5 we apply Monte Carlo
simulation to several real engineering systems. Vectorization lets us study time histo-
ries of random-process statistics. An inexpensive 3-GHz personal computer running
under 64-bit Linux can exercise over 1000 random-input control-system models in 1
second.

In Chapters 6 and 7 we demonstrate vector models of neural networks; our sim-
ple vector notation has been particularly useful for short courses on neural networks.
In Chapter 6 we apply backpropagation, functional-link, and radial-basis-function
networks to classical regression and pattern-classification problems and describe
several competitive-learning schemes. In the newly added Chapter 7 we turn to
dynamic neural networks for prediction, pattern classification, and model matching.
The chapter includes a new method for online prediction and simplified programs for
recurrent networks.

Chapter 8 deals with vectorized programs for fuzzy-set controllers, partial
differential equations, and agroecological models replicated at over 1000 points of
a landscape map. The Appendix gets a small selection of reference material out of
the way of the main text.

The writer would like to express his sincere thanks to Professor M. Main of the
University of Colorado for his assistance with Windows graphics, to Dr. R. Wieland
of the Leibniz Center for Agricultural Landscape Research (ZALF) for much good
advice, and above all to Theresa M. Korn for her consistent help with this and many
other projects.

GRANINO A. KORN
Wenatchee, Washingtron

CONTENTS

PREFACE xiii

CHAPTER 1 DYNAMIC-SYSTEM MODELS AND SIMULATION 1

SIMULATION IS EXPERIMENTATION WITH MODELS |
I-1 Simulation and Computer Programs |
12 Dynamic-System Models 2

(a) Difference-Equation Models 2

(b) Differential-Equation Models 2

(c) Discussion 3
1-3 Experiment Protocols Define Simulation Studies 3
1-4 Simulation Software 4
1-5 Fast Simulation Program for Interactive Modeling 5
ANATOMY OF A SIMULATION RUN 8
1-6 Dynamic-System Time Histories Are Sampled Periodically 8
1-7 Numerical Integration 10

(a) Euler Integration 10

(b) Improved Integration Rules 10
1-8 Sampling Times and Integration Steps 11
1-9 Sorting Defined-Variable Assignments 12
SIMPLE APPLICATION PROGRAMS 12
1-10 Oscillators and Computer Displays 12

(a) Linear Oscillator 12

(b) Nonlinear Oscillator: Duffing’s Differential Equation 14
1-11 Space-Vehicle Orbit Simulation with Variable-Step Integration 15
1-12 Population-Dynamics Model 17
1-13 Splicing Multiple Simulation Runs: Billiard-Ball Simulation 17
INRODUCTION TO CONTROL-SYSTEM SIMULATION 21
1-14 Electrical Servomechanism with Motor-Field Delay and Saturation 21
1-15 Control-System Frequency Response 23
1-16 Simulation of a Simple Guided Missile 24

(a) Guided Torpedo 24

(b) Complete Torpedo-Simulation Program 26
STOP AND LOOK 28
1-17 Simulation in the Real World: A Word of Caution 28
References 29

Vi CONTENTS

CHAPTER 2 MODELS WITH DIFFERENCE EQUATIONS, LIMITERS, AND
SWITCHES

31

SAMPLED-DATA SYSTEMS AND DIFFERENCE EQUATIONS 31
2-1 Sampled-Data Difference-Equation Systems 31
(a) Introduction 31
(b) Difference Equations 31
(¢c) A Minefield of Possible Errors 32
2-2 Solving Systems of First-Order Difference Equations 32
(a) General Difference-Equation Model 32
(b) Simple Recurrence Relations 33
2-3 Models Combining Differential Equations and Sampled-Data Operations 35
2-4 Simple Example 35
2-5 [Initializing and Resetting Sampled-Data Variables 35
TWO MIXED CONTINUOUS/SAMPLED-DATA SYSTEMS 37
2-6 Guided Torpedo with Digital Control 37
2-7 Simulation of a Plant with a Digital PID Controller 37
DYNAMIC-SYSTEM MODELS WITH LIMITERS
AND SWITCHES 40
2-8 Limiters, Switches, and Comparators 40
(a) Limiter Functions 40
(b) Switching Functions and Comparators 42
2-9 Integration of Switch and Limiter Outputs, Event Prediction, and Display
Problems 43
2-10 Using Sampled-Data Assignments 44
2-11 Using the step Operator and Heuristic Integration-Step Control 44
2-12 Example: Simulation of a Bang-Bang Servomechanism 45
2-13 Limiters, Absolute Values, and Maximum/Minimum Selection 46
2-14 Output-Limited Integration 47
2-15 Modeling Signal Quantization 48
EFFICIENT DEVICE MODELS USING RECURSIVE ASSIGNMENTS 48
2-16 Recursive Switching and Limiter Operations 48
2-17 Track/Hold Simulation 49
2-18 Maximum-Value and Minimum-Value Holding 50
2-19 Simple Backlash and Hysteresis Models 51
2-20 Comparator with Hysteresis (Schmitt Trigger) 52
2-21 Signal Generators and Signal Modulation 53
References 55

CHAPTER 3 FAST VECTOR-MATRIX OPERATIONS AND SUBMODELS

57

ARRAYS, VECTORS, AND MATRICES 57
3-1 Arrays and Subscripted Variables 57
(a) Improved Modeling 57
(b) Array Declarations, Vectors, and Matrices 57
(c) State-Variable Declarations 58
3-2 Vector and Matrices in Experiment Protocols 58
3-3 Time-History Arrays 58
VECTORS AND MODEL REPLICATION 59
3-4 Vector Operations in DYNAMIC Program Segments: The Vectorizing Compiler

59

CONTENTS

(a) Vector Assignments and Vector Expressions 59
(b) Vector Differential Equations 60
(¢) Vector Sampled-Data Assignments and Difference Equations 60
3-5 Matrix—Vector Products in Vector Expressions 61
(a) Definition 61
(b) Simple Example: Resonating Oscillators 61
3-6 Index-Shift Operation 63
(a) Definition 63
(b) Preview of Significant Applications 63
3-7 Sorting Vector and Subscripted-Variable Assignments 64
3-8 Replication of Dynamic-System Models 64
MORE VECTOR OPERATIONS 65
3-9 Sums, DOT Products, and Vector Norms 65
(a) Sums and DOT Products 65
(b) Euclidean, Taxicab, and Hamming Norms 65
3-10 Maximum/Minimum Selection and Masking 66
(a) Maximum/Minimum Selection 66
(b) Masking Vector Expressions 66
VECTOR EQUIVALENCE DECLARATIONS SIMPLIFY MODELS 67
3-11 Subvectors 67
3-12 Matrix—Vector Equivalence 67
MATRIX OPERATIONS IN DYNAMIC-SYSTEM MODELS 67
3-13 Simple Matrix Assignments 67
3-14 Two-Dimensional Model Replication 68
(a) Matrix Expressions and DOT Products 68
(b) Matrix Differential Equations 68
(c) Matrix Difference Equations 69
VECTORS IN PHYSICS AND CONTROL-SYSTEM PROBLEMS 69
3-15 Vectors in Physics Problems 69
3-16 Vector Model of a Nuclear Reactor 69
3-17 Linear Transformations and Rotation Matrices 70
3-18 State-Equation Models of Linear Control Systems 72
USER-DEFINED FUNCTIONS AND SUBMODELS 72
3-19 Introduction 72
3-20 User-Defined Functions 72
3-21 Submodel Declaration and Invocation 73
3-22 Dealing with Sampled-Data Assignments, Limiters, and Switches 75
References 75

CHAPTER 4 EFFICIENT PARAMETER-INFLUENCE STUDIES AND
STATISTICS COMPUTATION

vii

77

MODEL REPLICATION SIMPLIFIES PARAMETER-INFLUENCE STUDIES 77
4-1 Exploring the Effects of Parameter Changes 77
4-2 Repeated Simulation Runs Versus Model Replication 78
(a) Simple Repeated-Run Study 78
(b) Model Replication (Vectorization) 78
4-3 Programming Parameter-Influence Studies 80
(a) Measures of System Performance 80
(b) Program Design 81

viili CONTENTS

(¢c) Two-Dimensional Model Replication 81
(d) Cross-Plotting Results 82
(e) Maximum/Minimum Selection 83
(f) Iterative Parameter Optimization 83
STATISTICS 84
4-4 Random Data and Statistics 84
4-5 Sample Averages and Statistical Relative Frequencies 85
COMPUTING STATISTICS BY VECTOR AVERAGING 85
4-6 Fast Computation of Sample Averages 85
4-7 Fast Probability Estimation 86
4-8 Fast Probability-Density Estimation 86
(a) Simple Probability-Density Estimate 86
(b) Triangle and Parzen Windows 87
(¢) Computation and Display of Parzen-Window Estimates 88
4-9 Sample-Range Estimation 90
REPLICATED AVERAGES GENERATE SAMPLING DISTRIBUTIONS 91
4-10 Computing Statistics by Time Averaging 91
4-11 Sample Replication and Sampling-Distribution Statistics 91
(a) Introduction 91
(b) Demonstrations of Empirical Laws of Large Numbers 93
(c) Counterexample: Fat-Tailed Distribution 95
RANDOM-PROCESS SIMULATION 95
4-12 Random Processes and Monte Carlo Simulation 95
4-13 Modeling Random Parameters and Random Initial Values 97
4-14 Sampled-Data Random Processes 97
4-15 *Continuous” Random Processes 98
(a) Modeling Continuous Noise 98
(b) Continuous Time Averaging 99
(c) Correlation Functions and Spectral Densities 100
4-16 Problems with Simulated Noise 100
SIMPLE MONTE CARLO EXPERIMENTS 100
4-17 Introduction 100
4-18 Gambling Returns 100
4-19 Vectorized Monte Carlo Study of a Continuous Random Walk 102
References 106

CHAPTER 5 MONTE CARLO SIMULATION OF REAL DYNAMIC SYSTEMS 109

INTRODUCTION 109
5-1 Survey 109
REPEATED-RUN MONTE CARLO SIMULATION 109
5-2 End-of-Run Statistics for Repeated Simulation Runs 109
5-3 Example: Effects of Gun-Elevation Errors on a 1776 Cannnonball Trajectory 110
5-4 Sequential Monte Carlo Simulation 113
VECTORIZED MONTE CARLO SIMULATION 113
5-5 Vectorized Monte Carlo Simulation of the 1776
Cannon Shot 113
5-6 Combined Vectorized and Repeated-Run Monte Carlo Simulation 115
5-7 Interactive Monte Carlo Simulation: Computing Runtime Histories of
Statistics with DYNAMIC-Segment DOT Operations 115

CONTENTS

5-8 Example: Torpedo Trajectory Dispersion 117
SIMULATION OF NOISY CONTROL SYSTEMS 119
5-9 Monte Carlo Simulation of a Nonlinear Servomechanism: A Noise-Input Test 119
5-10 Monte Carlo Study of Control-System Errors Caused by Noise 121
ADDITIONAL TOPICS 123
5-11 Monte Carlo Optimization 123
5-12 Convenient Heuristic Method for Testing Pseudorandom Noise 123
5-13 Alternative to Monte Carlo Simulation 123

(a) Introduction 123

(b) Dynamic Systems with Random Perturbations 123

(c) Mean-Square Errors in Linearized Systems 124
References 125

ix

CHAPTER 6 VECTOR MODELS OF NEURAL NETWORKS 127

ARTIFICIAL NEURAL NETWORKS 127
6-1 Introduction 127
6-2 Artificial Neural Networks 127
6-3 Static Neural Networks: Training, Validation, and Applications 128
6-4 Dynamic Neural Networks 129
SIMPLE VECTOR ASSIGNMENTS MODEL NEURON LAYERS 130
6-5 Neuron-Layer Declarations and Neuron Operations 130
6-6 Neuron-Layer Concatenation Simplifies Bias Inputs 130
6-7 Normalizing and Contrast-Enhancing Layers 131
(a) Pattern Normalization 131
(b) Contrast Enhancement: Softmax and Thresholding 131
6-8 Multilayer Networks 132
6-9 Exercising a Neural-Network Model 132
(a) Computing Successive Neuron-Layer Outputs 132
(b) Input from Pattern-Row Matrices 133
(¢) Input from Text Files and Spreadsheets 133
SUPERVISED TRAINING FOR REGRESSION 134
6-10 Mean-Square Regression 134
(a) Problem Statement 134
(b) Linear Mean-Square Regression and the Delta Rule 135
(c) Nonlinear Neuron Layers and Activation-Function Derivatives 136
(d) Error-Measure Display 136
6-11 Backpropagation Networks 137
(a) The Generalized Delta Rule 137
(b) Momentum Learning 139
(¢) Simple Example 139
(d) The Classical XOR Problem and Other Examples 140
MORE NEURAL-NETWORK MODELS 140
6-12 Functional-Link Networks 140
6-13 Radial-Basis-Function Networks 142
(a) Basis-Function Expansion and Linear Optimization 142
(b) Radial Basis Functions 143
6-14 Neural-Network Submodels 145
PATTERN CLASSIFICATION 146
6-15 Introduction 146

X CONTENTS

6-16 Classifier Input from Files 147
6-17 Classifier Networks 147
(a) Simple Linear Classifiers 147
(b) Softmax Classifiers 148
(c) Backpropagation Classifiers 148
(d) Functional-Link Classifiers 149
(e) Other Classsifiers 149
6-18 Examples 149
(a) Classification Using an Empirical Database: Fisher’s Iris Problem
(b) Image-Pattern Recognition and Associative Memory 151
PATTERN SIMPLIFICATION 155
6-19 Pattern Centering 155
6-20 Feature Reduction 156
(a) Bottleneck Layers and Encoders 156
(b) Principal Components 156
NETWORK-TRAINING PROBLEMS 157
6-21 Learning-Rate Adjustment 157
6-22 Overfitting and Generalization 157
(a) Introduction 157
(b) Adding Noise 158
(c) Early Stopping 158
(d) Regularization 159
6-23 Beyond Simple Gradient Descent 159
UNSUPERVISED COMPETITIVE-LAYER CLASSIFIERS 159
6-24 Template-Pattern Matching and the CLEARN Operation 159
(a) Template Patterns and Template Matrix 159
(b) Matching Known Template Patterns 160
(¢c) Template-Pattern Training 160
(d) Correlation Training 162
6-25 Learning with Conscience 163
6-26 Competitive-Learning Experiments 164
(a) Pattern Classification 164
(b) Vector Quantization 164
6-27 Simplified Adaptive-Resonance Emulation 165
SUPERVISED COMPETITIVE LEARNING 167
6-28 The LVQ Algorithm for Two-Way Classification 167
6-29 Counterpropagation Networks 167
EXAMPLES OF CLEARN CLASSIFIERS 168
6-30 Recognition of Known Patterns 168
(a) Image Recognition 168
(b) Fast Solution of the Spiral Benchmark Problem 169
6-31 Learning Unknown Patterns 173
References 174

CHAPTER 7 DYNAMIC NEURAL NETWORKS

149

177

INTRODUCTION 177
7-1 Dynamic Versus Static Neural Networks 177
7-2 Applications of Dynamic Neural Networks 177

7-3 Simulations Combining Neural Networks and Differential-Equation Models

178

CONTENTS Xi

NEURAL NETWORKS WITH DELAY-LINE INPUT 178
7-4 Introduction 178
7-5 The Delay-Line Model 180
7-6 Delay-Line-Input Networks 180
(a) Linear Combiners 180
(b) One-Layer Nonlinear Network 181
(c) Functional-Link Network 181
(d) Backpropagation Network with Delay-Line Input 182
7-7 Using Gamma Delay Lines 182
STATIC NEURAL NETWORKS USED AS DYNAMIC NETWORKS 183
7-8 Introduction 183
7-9 Simple Backpropagation Networks 184
RECURRENT NEURAL NETWORKS 185
7-10 Layer-Feedback Networks 185
7-11 Simplified Recurrent-Network Models Combine Context and Input Layers 185
(a) Conventional Model of a Jordan Network 185
(b) Simplified Jordan-Network Model 186
(c) Simplified Models for Other Feedback Networks 187
7-12 Neural Networks with Feedback Delay Lines 187
(a) Delay-Line Feedback 187
(b) Neural Networks with Both Input and Feedback Delay Lines 188
7-13 Teacher Forcing 189
PREDICTOR NETWORKS 189
7-14 Off-Line Predictor Training 189
(a) Off-Line Prediction Using Stored Time Series 189
(b) Off-Line Training System for Online Predictors 189
(c) Example: Simple Linear Predictor 190
7-15 Online Trainng for True Online Prediction 192
7-16 Chaotic Time Series for Prediction Experiments 192
7-17 Gallery of Predictor Networks 193
OTHER APPLICATIONS OF DYNAMIC NETWORKS 199
7-18 Temporal-Pattern Recognition: Regression and Classification 199
7-19 Model Matching 201
(a) Introduction 201
(b) Example: Program for Matching Narendra’s Plant Model 201
MISCELLANEOUS TOPICS 204
7-20 Biological-Network Software 204
References 204

CHAPTER 8 MORE APPLICATIONS OF VECTOR MODELS 207

VECTORIZED SIMULATION WITH LOGARITHMIC PLOTS 207
8-1 The EUROSIM No. 1 Benchmark Problem 207
8-2 Vectorized Simulation with Logarithmic Plots 207
MODELING FUZZY-LOGIC FUNCTION GENERATORS 209
8-3 Rule Tables Specify Heuristic Functions 209
8-4 Fuzzy-Set Logic 210

(a) Fuzzy Sets and Membership Functions 210

(b) Fuzzy Intersections and Unions 210

(c) Joint Membership Functions 213

(d) Normalized Fuzzy-Set Partitions 213

Xn CONTENTS

8-5 Fuzzy-Set Rule Tables and Function Generators 214
8-6 Simplified Function Generation with Fuzzy Basis Functions 214
8-7 Vector Models of Fuzzy-Set Partitions 215
(a) Gaussian Bumps: Effects of Normalization 215
(b) Triangle Functions 215
(c) Smooth Fuzzy-Basis Functions 216
8-8 Vector Models for Multidimensional Fuzzy-Set Partitions 216
8-9 Example: Fuzzy-Logic Control of a Servomechanism 217
(a) Problem Statement 217
(b) Experiment Protocol and Rule Table 217
(c) DYNAMIC Program Segment and Results 220
PARTIAL DIFFERENTIAL EQUATIONS 221
8-10 Method of Lines 221
8-11 Vectorized Method of Lines 221
(a) Introduction 221
(b) Using Differentiation Operators 221
(c) Numerical Problems 224
8-12 Heat-Conduction Equation in Cylindrical Coordinates 225
8-13 Generalizations 225
8-14 Simple Heat-Exchanger Model 227
FOURIER ANALYSIS AND LINEAR-SYSTEM DYNAMICS 229
8-15 Introduction 229
8-16 Function-Table Lookup and Interpolation 230
8-17 Fast-Fourier-Transform Operations 230
8-18 Impulse and Freqency Response of a Linear Servomechanism 231
8-19 Compact Vector Models of Linear Dynamic Systems 232
(a) Using the Index-Shift Operation with Analog Integration 232
(b) Linear Sampled-Data Systems 235
(c) Example: Digital Comb Filter 236
REPLICATION OF AGROECOLOGICAL MODELS ON MAP GRIDS 237
8-20 Geographical Information System 237
8-21 Modeling the Evolution of Landscape Features 239
8-22 Matrix Operations on a Map Grid 239
References 242

APPENDIX: ADDITIONAL REFERENCE MATERIAL 245
A-1 Example of a Radial-Basis-Function Network 245

A-2 Fuzzy-Basis-Function Network 245

References 248

USING THE BOOK CD 251
INDEX 253

CHAPTER 1
—_— e

DYNAMIC-SYSTEM MODELS
AND SIMULATION

SIMULATION IS EXPERIMENTATION
WITH MODELS

1-1. Simulation and Computer Programs

Simulation is experimentation with models. For system design, research, and edu-
cation, simulations must not only construct and modify many different models but
also store and access a large volume of results. That is practical only with models
programmed on computers [1,2].

In this book we model changes of system variables with time; we represent
physical time by the simulation time variable t. Our models then attempt to predict
different time histories y1 = y1(t), y2 = y2(t), ... of system variables such as veloc-
ity, voltage, and biomass. Static models simply relate values of system variables
x(t), y(t), .. . at the same time t; a gas pressure P(t), for instance, might be a function
P = aT of the slowly changing temperature T(t).

Dynamic-system models predict values of model-system state variables x1(t),
x2(t), ... by relating them to past states [x1(t), x2(t), . ..] (Sec. 1-2). Computer simu-
lation of such systems was applied first in the aerospace industry. Simulation is now
indispensable not only in all engineering disciplines, but also in biology, medicine,
and agroecology. At the same time, discrete-event simulation gained importance for
business and military planning.

Simulation is most effective when it is combined with mathematical analyses.
But simulation results often provide insight and suggest useful decisions where exact
analysis is difficult or impossible. This was true for many early control-system opti-
mizations. As another example, Monte Carlo simulations simply measure statistics
over repeated experiments to solve problems too complicated for explicit probability-
theory analysis. All simulation results must eventually be validated by real experi-
ments, just like analytical results.

Computer simulations can be speeded up or slowed down for the experimenter’s
convenience. One can simulate a flight to Mars or to Alpha Centauri in one second.
Periodic clock interrupts synchronizing suitably scaled simulations with real time
permit “hardware in the loop™: One can “fly” a real autopilot—or a human pilot—on
a tilt table controlled by computer flight simulation. In this book we are interested

Advanced Dynamic-System Simulation: Model Replication and Monte Carlo Studies, Second Edition. Granino A. Korn.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.

2 CHAPTER1 DYNAMIC-SYSTEM MODELS AND SIMULATION

in very fast simulation because we need to study many different model changes very
quickly. Specifically, we would like to
e enter and edit programs in convenient editor windows.

e use typed or graphical-interface commands to start, stop, and pause simula-
tions, to select displays, and to make parameter changes. Displays of simulation
results ought to appear immediately to provide an intuitive “feel” for the effects
of model changes (interactive modeling).

e program systematic parameter-optimization studies and produce cross-plots
and statistics.

1-2. Dynamic-System Models
(@) Difference-Equation Models’

The simplest way to relate present values x(t) and past values x(t— At) of a state
variable x = x(t) is a difference equation such as the simple recurrence

x(t) = F[x(t), x(t - At)]

More general difference-equation models relate several state variables and their past
values. In Chapter 2 we discuss such models in detail.

(b) Differential-Equation Models

Much of classical physics and engineering is based on differential-equation models
that relate delayed interactions of continuous differential-equation state variables
x1(t), x2(t), . .. with first-order ordinary differential equations (stafe equations)?

(d/dt) xi = fi(t; x1,x2,...;y1,y2,...;al1,a2,...) (i=1,2,...) (l-la)
Here t again represents the time, and the quantities
yi =gj(t; x1,x2,...;y1,y2,...;b1,b2,...) (i=1,2,..) (1-1b)

are defined variables. a1, a2,... and b1, b2,... are constant model parameters.

A computer-implemented simulation run exercises such a model by solving
the state-equation system (1-1) to produce time histories of the system variables
xi = xi(t) and yj = yj(t) for t = t0 to t = t0 + TMAX. An integration routine increments
the model time t and integrates the derivatives (1-1a) to produce successive values of
xi(t) (Sec. 1-7), starting with given initial values xi = xi(t0).

'We refer to recursive relations in general as difference equations, whereas some authors reserve this term
for relations formulated in terms of explicit finite differences [11].

2We reduce higher-order differential equations to first-order systems by introducing derivatives as extra
state variables. Thus, d?x/dt? = —kx becomes

dx/dt = xdot dxdot/dt = —kx

(see also Sec. 1-10).

SIMULATION IS EXPERIMENTATION WITH MODELS 3

Each state variable xi is a model output. There are three types of defined
variables yj:

1. model inputs (specified functions of the time t),
2. model outputs, and

3. intermediate results needed to compute the derivatives fi.

The defined-variable assignments (1-1b) must be sorted into a procedure that derives
updated values for all yj from current values of the state variables xi, already computed
yj values, and/or t without “algebraic loops™ (Sec. 1-9).

Some dynamic systems (e.g., systems involving linkages in automotive engi-
neering and robotics) are modeled with differential equations that cannot be solved
explicitly for state-variable derivatives as in Eq. (1-1a). Simulation then requires
solution of algebraic equations at each integration step. Such differential-algebraic-
equation systems are not treated in this book. References 6 to 11 describe suitable
mathematical methods and special software.

(c) Discussion

Much of classical physics (Newtonian dynamics, electrical-circuit theory, chemical
reactions) uses differential equations. As aresult, most legacy simulation programs are
basically differential-equation solvers and relegate difference equations to accessory
“procedural” program segments. Modern engineering systems, though, often involve
digital controllers and thus sampled-data operations that implement difference equa-
tions. In this book we introduce a program package specifically designed to handle
such problems. We start with differential-equation problems in Chapter 1 and go on
to difference equations and mixed continuous/sampled-data models in Chapter 2.

1-3. Experiment Protocols Define Simulation Studies

Effective computer simulation is not simply a matter of programming model equa-
tions. It must also be truly convenient to modify models and to try many different
experiments (see also Sec. 1-5). In addition to program segments that list model
equations such as those in Sec. 1-2, every simulation needs an experiment-protocol
program that sets and changes initial conditions and parameters, calls differential-
equation-solving simulation runs, and displays or lists solutions.

A simple experiment protocol implements a sequence of successive commands:
say

a=200 | b=-3.35 (setparameter values)
x=12.0 (set the initial value of x)

drun (make a differential-equation-solving simulation run)
reset (reset initial values)

a=20.1 (change model parameters)

b=b-2.2

drun (try another run)

4 CHAPTER 1 DYNAMIC-SYSTEM MODELS AND SIMULATION

Each drun command calls a new simulation run. The command reset resets initial
conditions for new runs.

A command intepreter executes typed commands immediately. Users can
inspect the solution output after each simulation run and then enter new commands
for another run. Command-mode operation permits interactive programming and
program debugging [2].

Graphical-user-interface (GUI) simulation programs replace typed com-
mands with windows for entering model parameters and menus and/or buttons for
executing such commands as run and reset using mouse clicks. This is convenient for
special-purpose simulation programs with simple experiment protocols. Typed and
programmed commands entered in a console window (command window) permit a
much wider choice of operations.

A programmed simulation study combines experiment-protocol commands
into a stored program called an experiment-protocol script. Such a program can
branch and loop to call repeated simulation runs (e.g., for parameter optimization or
statistical studies). Proper experiment-protocol scripts require a full-fledged computer
language with functions, procedures, program loops, conditional execution, and file
operations.

Simulation studies can involve many model and parameter changes, so program
execution must be prompt and fast. We can interpret experiment-protocol scripts. But
“dynamic” program segments that implement simulation runs update system variables
hundreds or thousands of times. Such time-critical operations must be compiled.’

1-4. Simulation Software

Equation-oriented simulation programs such as ACSL™ accept model equations
in a more or less human-readable notation, sort defined-variable assignments as
needed, and feed the sorted equations to a Fortran or C compiler [1]. Berkeley
Madonna and Desire (see below) have runtime equation-language compilers and
execute immediately. Block-diagram interpreters (e.g., Simulink™ and the free
open-source Scicoslab program) let users compose block-diagram models on the dis-
play screen. Such programs execute interpreted simulation runs immediately but rel-
atively slowly. To improve computing speed, most block-diagram interpreters admit
precompiled equation-language blocks for complicated expressions, and produc-
tion runs are sometimes translated into C for faster execution. Alternatively, ACSL,
Easy5™, and Berkeley Madonna have block-diagram preprocessors for compiled
simulation programs. Differential-algebraic (DAE) models need substantially more
complicated software, preferably using the Modelica Language [3-6]. Dynasim™
and Maplesim™ are examples.

3nterpreter programs translate individual commands one-by-one into the computer’s machine language.
Compilers speed program execution by translating complete program segments.

