Advanced
Dynamic-System
Simulation

Model Replication and Monte Carlo Studies

B e o e o, Y T S e e e R e e e 1
I |

— il

EGranino A Korn !




SECOND EDITION

ADVANCED
DYNAMIC-SYSTEM
SIMULATION

Model Replication and
Monte Carlo Studies

GRANINO A. KORN

University of Arizona

)WILEY

A JOHN WILEY & SONS, INC., PUBLICATION



Copyright © 2013 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400,

fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission
should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken,
NJ 07030, (201) 748-601 1, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be suitable
for your situation. You should consult with a professional where appropriate. Neither the publisher nor
author shall be liable for any loss of profit or any other commercial damages, including but not limited to
special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at (317)
572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats, Some content that appears in print may
not be available in electronic formats. For more information about Wiley products, visit our web site at
www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Korn, Granino A. (Granino Arthur), 1922—
Advanced dynamic-system simulation : model replication and Monte Carlo studies / by Granino A.
Korn. — Second edition.
pages cm
Includes bibliographical references.
ISBN 978-1-118-39735-0 (hardback)
1. System analysis—Simulation methods. 2. Open source software. 3. Computer
software—Development. L Title.
QA402.K665 2013
003".85-dc23
2012034771

Printed in the United States of America

10987654321



PREFACE

Simulation is experimentation with models. In this book we describe efficient inter-
active computer programs that model dynamic systems such as control systems,
aerospace vehicles, and biological systems. Simulation studies can involve many
hundreds of model changes, so programs must be fast and user-friendly.

For hands-on experiments with each program example, the book CD now
includes industrial-strength open-source simulation software for both Windows™
and Linux, not just toy demonstration programs. The Desire modeling/simulation pro-
gram implements very fast and respectably large simulations on personal computers.
Runtime-compiled programs display results immediately to permit true interactive
modeling.

A readable mathematical notation, for example,

x=234 | alpha=0
d/dtx = -x*cos(w*t) +2.22*a*x
Vectory=A*x+B*u

lets readers try different parameter values without learning details of the programming
language. Note that one can read ebook pages and run live simulations on the same
computer display.

In Chapter 1 we introduce our subject with a few familiar differential-equation
models and a small guided-missile simulation. The remainder of the book presents
more advanced topics; most of our example programs were rewritten to clarify the
modeling technique and to increase computing speed.

Chapter 2 begins with a newly revised systematic procedure for programming
difference equations and applies this to model plants with digital controllers. We then
discuss limiters and switches and model useful devices such as track/hold circuits,
trigger circuits, and signal generators with simple difference equations. Last but
not least, we propose a simplified technique for numerical integration of switched
variables.

Advanced simulation programs must handle differential and difference equa-
tions with vector and matrix assignments. In Chapter 3 we introduce runtime vector
compilation. This speeds up conventional vector and matrix operations, but more
significantly, personal computers can now implement model replication (vectoriza-
tion), a technique originally developed for supercomputers. A single vector-model
run replaces hundreds or thousands of conventional simulation runs. Chapter 3 also
demonstrates the convenience of user-defined submodels.

In the remaining chapters we describe applications of vectorization. In Chap-
ter 4 we discuss parameter-influence studies and introduce vectorized statistics

xiii



XiV  PREFACE

computation, including rapid estimation of probability densities. We then introduce
Monte Carlo simulation of random processes. In Chapter 5 we apply Monte Carlo
simulation to several real engineering systems. Vectorization lets us study time histo-
ries of random-process statistics. An inexpensive 3-GHz personal computer running
under 64-bit Linux can exercise over 1000 random-input control-system models in 1
second.

In Chapters 6 and 7 we demonstrate vector models of neural networks; our sim-
ple vector notation has been particularly useful for short courses on neural networks.
In Chapter 6 we apply backpropagation, functional-link, and radial-basis-function
networks to classical regression and pattern-classification problems and describe
several competitive-learning schemes. In the newly added Chapter 7 we turn to
dynamic neural networks for prediction, pattern classification, and model matching.
The chapter includes a new method for online prediction and simplified programs for
recurrent networks.

Chapter 8 deals with vectorized programs for fuzzy-set controllers, partial
differential equations, and agroecological models replicated at over 1000 points of
a landscape map. The Appendix gets a small selection of reference material out of
the way of the main text.

The writer would like to express his sincere thanks to Professor M. Main of the
University of Colorado for his assistance with Windows graphics, to Dr. R. Wieland
of the Leibniz Center for Agricultural Landscape Research (ZALF) for much good
advice, and above all to Theresa M. Korn for her consistent help with this and many
other projects.

GRANINO A. KORN
Wenatchee, Washingtron
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CHAPTER 1
—_— e

DYNAMIC-SYSTEM MODELS
AND SIMULATION

SIMULATION IS EXPERIMENTATION
WITH MODELS

1-1. Simulation and Computer Programs

Simulation is experimentation with models. For system design, research, and edu-
cation, simulations must not only construct and modify many different models but
also store and access a large volume of results. That is practical only with models
programmed on computers [1,2].

In this book we model changes of system variables with time; we represent
physical time by the simulation time variable t. Our models then attempt to predict
different time histories y1 = y1(t), y2 = y2(t), ... of system variables such as veloc-
ity, voltage, and biomass. Static models simply relate values of system variables
x(t), y(t), .. . at the same time t; a gas pressure P(t), for instance, might be a function
P = aT of the slowly changing temperature T(t).

Dynamic-system models predict values of model-system state variables x1(t),
x2(t), ... by relating them to past states [x1(t), x2(t), . ..] (Sec. 1-2). Computer simu-
lation of such systems was applied first in the aerospace industry. Simulation is now
indispensable not only in all engineering disciplines, but also in biology, medicine,
and agroecology. At the same time, discrete-event simulation gained importance for
business and military planning.

Simulation is most effective when it is combined with mathematical analyses.
But simulation results often provide insight and suggest useful decisions where exact
analysis is difficult or impossible. This was true for many early control-system opti-
mizations. As another example, Monte Carlo simulations simply measure statistics
over repeated experiments to solve problems too complicated for explicit probability-
theory analysis. All simulation results must eventually be validated by real experi-
ments, just like analytical results.

Computer simulations can be speeded up or slowed down for the experimenter’s
convenience. One can simulate a flight to Mars or to Alpha Centauri in one second.
Periodic clock interrupts synchronizing suitably scaled simulations with real time
permit “hardware in the loop™: One can “fly” a real autopilot—or a human pilot—on
a tilt table controlled by computer flight simulation. In this book we are interested

Advanced Dynamic-System Simulation: Model Replication and Monte Carlo Studies, Second Edition. Granino A. Korn.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.



2 CHAPTER1 DYNAMIC-SYSTEM MODELS AND SIMULATION

in very fast simulation because we need to study many different model changes very
quickly. Specifically, we would like to
e enter and edit programs in convenient editor windows.

e use typed or graphical-interface commands to start, stop, and pause simula-
tions, to select displays, and to make parameter changes. Displays of simulation
results ought to appear immediately to provide an intuitive “feel” for the effects
of model changes (interactive modeling).

e program systematic parameter-optimization studies and produce cross-plots
and statistics.

1-2. Dynamic-System Models
(@) Difference-Equation Models’

The simplest way to relate present values x(t) and past values x(t— At) of a state
variable x = x(t) is a difference equation such as the simple recurrence

x(t) = F[x(t), x(t - At)]

More general difference-equation models relate several state variables and their past
values. In Chapter 2 we discuss such models in detail.

(b) Differential-Equation Models

Much of classical physics and engineering is based on differential-equation models
that relate delayed interactions of continuous differential-equation state variables
x1(t), x2(t), . .. with first-order ordinary differential equations (stafe equations)?

(d/dt) xi = fi(t; x1,x2,...;y1,y2,...;al1,a2,...) (i=1,2,...) (l-la)
Here t again represents the time, and the quantities
yi =gj(t; x1,x2,...;y1,y2,...;b1,b2,...) (i=1,2,..) (1-1b)

are defined variables. a1, a2,... and b1, b2,... are constant model parameters.

A computer-implemented simulation run exercises such a model by solving
the state-equation system (1-1) to produce time histories of the system variables
xi = xi(t) and yj = yj(t) for t = t0 to t = t0 + TMAX. An integration routine increments
the model time t and integrates the derivatives (1-1a) to produce successive values of
xi(t) (Sec. 1-7), starting with given initial values xi = xi(t0).

'We refer to recursive relations in general as difference equations, whereas some authors reserve this term
for relations formulated in terms of explicit finite differences [11].

2We reduce higher-order differential equations to first-order systems by introducing derivatives as extra
state variables. Thus, d?x/dt? = —kx becomes

dx/dt = xdot dxdot/dt = —kx

(see also Sec. 1-10).
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Each state variable xi is a model output. There are three types of defined
variables yj:

1. model inputs (specified functions of the time t),
2. model outputs, and

3. intermediate results needed to compute the derivatives fi.

The defined-variable assignments (1-1b) must be sorted into a procedure that derives
updated values for all yj from current values of the state variables xi, already computed
yj values, and/or t without “algebraic loops™ (Sec. 1-9).

Some dynamic systems (e.g., systems involving linkages in automotive engi-
neering and robotics) are modeled with differential equations that cannot be solved
explicitly for state-variable derivatives as in Eq. (1-1a). Simulation then requires
solution of algebraic equations at each integration step. Such differential-algebraic-
equation systems are not treated in this book. References 6 to 11 describe suitable
mathematical methods and special software.

(c) Discussion

Much of classical physics (Newtonian dynamics, electrical-circuit theory, chemical
reactions) uses differential equations. As aresult, most legacy simulation programs are
basically differential-equation solvers and relegate difference equations to accessory
“procedural” program segments. Modern engineering systems, though, often involve
digital controllers and thus sampled-data operations that implement difference equa-
tions. In this book we introduce a program package specifically designed to handle
such problems. We start with differential-equation problems in Chapter 1 and go on
to difference equations and mixed continuous/sampled-data models in Chapter 2.

1-3. Experiment Protocols Define Simulation Studies

Effective computer simulation is not simply a matter of programming model equa-
tions. It must also be truly convenient to modify models and to try many different
experiments (see also Sec. 1-5). In addition to program segments that list model
equations such as those in Sec. 1-2, every simulation needs an experiment-protocol
program that sets and changes initial conditions and parameters, calls differential-
equation-solving simulation runs, and displays or lists solutions.

A simple experiment protocol implements a sequence of successive commands:
say

a=200 | b=-3.35 (setparameter values)
x=12.0 (set the initial value of x)

drun (make a differential-equation-solving simulation run)
reset (reset initial values)

a=20.1 (change model parameters)

b=b-2.2

drun (try another run)
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Each drun command calls a new simulation run. The command reset resets initial
conditions for new runs.

A command intepreter executes typed commands immediately. Users can
inspect the solution output after each simulation run and then enter new commands
for another run. Command-mode operation permits interactive programming and
program debugging [2].

Graphical-user-interface (GUI) simulation programs replace typed com-
mands with windows for entering model parameters and menus and/or buttons for
executing such commands as run and reset using mouse clicks. This is convenient for
special-purpose simulation programs with simple experiment protocols. Typed and
programmed commands entered in a console window (command window) permit a
much wider choice of operations.

A programmed simulation study combines experiment-protocol commands
into a stored program called an experiment-protocol script. Such a program can
branch and loop to call repeated simulation runs (e.g., for parameter optimization or
statistical studies). Proper experiment-protocol scripts require a full-fledged computer
language with functions, procedures, program loops, conditional execution, and file
operations.

Simulation studies can involve many model and parameter changes, so program
execution must be prompt and fast. We can interpret experiment-protocol scripts. But
“dynamic” program segments that implement simulation runs update system variables
hundreds or thousands of times. Such time-critical operations must be compiled.’

1-4. Simulation Software

Equation-oriented simulation programs such as ACSL™ accept model equations
in a more or less human-readable notation, sort defined-variable assignments as
needed, and feed the sorted equations to a Fortran or C compiler [1]. Berkeley
Madonna and Desire (see below) have runtime equation-language compilers and
execute immediately. Block-diagram interpreters (e.g., Simulink™ and the free
open-source Scicoslab program) let users compose block-diagram models on the dis-
play screen. Such programs execute interpreted simulation runs immediately but rel-
atively slowly. To improve computing speed, most block-diagram interpreters admit
precompiled equation-language blocks for complicated expressions, and produc-
tion runs are sometimes translated into C for faster execution. Alternatively, ACSL,
Easy5™, and Berkeley Madonna have block-diagram preprocessors for compiled
simulation programs. Differential-algebraic (DAE) models need substantially more
complicated software, preferably using the Modelica Language [3-6]. Dynasim™
and Maplesim™ are examples.

3nterpreter programs translate individual commands one-by-one into the computer’s machine language.
Compilers speed program execution by translating complete program segments.



