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Preface

This book is intended to provide a much needed systematic exposition of the
mathematical methods of quantum optics, something that is not found in
existing books. It is primarily addressed to researchers who are new to the
field. The emphasis, therefore, is on a simple and self-contained, yet concise,
presentation. It provides a unified view of the concepts and the methods of
quantum optics and aims to prepare a reader to handle specific situations.
A number of formulae scattered throughout the scientific literature are also
brought together in a natural manner.

The broad plan of the book is to introduce first the basic physics and
mathematical concepts, then to apply them to construct the model hamilto-
nians of the atom-field interaction and the master equation for an atom-field
system interacting with the environment, and to analyze the equations so
obtained. A brief description of the contents of the chapters is as follows.

The first chapter introduces the basic postulates of quantum mechanics,
brings out their implications and develops the associated operational tech-
niques. It discusses the measurement problem, the paradoxes of quantum
mechanics and the local hidden variables theory, since quantum optics pro-
vides experimental means of examining these issues. Chapter 2 outlines the
algebra of the exponential operator, which plays a prominent role in mathe-
matical physics. The concept of Lie algebra is introduced and the standard
hamiltonians of quantum optics are treated as elements of one or the other
finite-dimensional Lie algebra. The question of representations of Lie algebras
is addressed in Chap. 3. The notion of coherent states emerges as a continuous
representation of a Lie algebra. The concept of quasiprobabilities is developed
in Chap. 4. Their usefulness as operational tools and as entities for identify-
ing purely quantum effects is demonstrated. Chapter 5 presents the essential
elements of the theory of stochastic processes. The theory of classical and
quantized electromagnetic (e.m.) fields is outlined in Chap. 6. It describes
the characterization of the e.m. field in terms of its correlation functions and
also their role in identifying the signatures of field quantization.

By starting with the hamiltonian for an atom interacting with the e.m.
field in the dipole approximation, Chap.7 describes ways of reducing it to
simpler, mathematically tractable forms commensurate with given physical
conditions. The standard models of quantum optics are thereby derived. The
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effects of the environment on an atom-field system are the subject of the
quantum theory of damping outlined in Chap.8. Here the master equation
for the evolution of a system in contact with a reservoir is constructed and
methods of solving it are discussed.

Chapter 9 analyzes the perturbative solution of the master equation of an
atomic system in an external field. This leads to the notions of susceptibility,
multiwave mixing and the absorption spectrum.

The method of solving a set of linear equations with time-independent
coefficients in terms of generalized eigenvectors is outlined in Chap. 10. That
chapter presents the solution of a two-term recurrence relation and identifies
and solves exactly solvable quadratic three-term recurrence relations. These
recurrence relations encompass many well-known quantum optical situations.

Chapters 11-14 deal with the solution of some standard model systems.
Chapter 11 identifies the class of analytically exactly solvable models of an ef-
fective two-level atom and that of an effective three-level atom in a quantized
field. It provides a unified treatment of the exactly solvable hamiltonians of
quantum optics.

The problem of an externally driven two-level atomic system dissipating
into a squeezed reservoir is addressed in Chap. 12. The exactly solvable cases
of an arbitrary time-dependent drive are identified. The exact dynamics in
a monochromatic drive is investigated and the collective effects in a driven
two-level atomic system are highlighted. Chapter 12 also briefly discusses
the dynamical behaviour of a three-level atom dissipating into a reservoir at
absolute zero temperature and reveals the effects of almost equally spaced
pairs of energy levels.

The dynamics of a field dissipating into a linear or two-photon non-linear
reservoir is the subject of Chap.13. The evolution of an atomic system in-
teracting with a single damped quantized cavity mode is investigated in
Chap. 14. This chapter also outlines the theory of the micromaser.

I am indebted to Girish Agarwal for teaching me the subject of quantum
optics. Valuable contributions to my understanding have been gained through
my association with Robert (Robin) Bullough, Joseph Eberly, Fritz Haake,
Shoukry Hassan, Rajiah Simon, Subhash Chaturvedi, V. Srinivasan, Subha-
sish Dattagupta, Surya Tiwari, Dinkar Khandekar and Suresh Lawande. I am
grateful to Debabrata Biswas and Aditi Ray for their valuable suggestions
and help in preparing the manuscript. I am thankful to Dinesh Sahni for his
support and encouragement. Angela Lahee of Springer-Verlag deserves a big
thank you for her careful editing.

Mumbai, Ravinder Puri
January 2001
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1. Basic Quantum Mechanics

Quantum optics is the quantum theory of interaction of the electromagnetic
field with matter. In this chapter we recapitulate basic concepts and opera-
tional methods of the quantum theory essential for developing the theory of
quantum optics. We delve also in to the controversial issue of interpretation of
the quantum theory as a classical statistical theory. Quantum optics provides
means for subjecting these conceptually controversial issues to experimental
tests.

1.1 Postulates of Quantum Mechanics

In this section we state five basic postulates of Quantum Mechanics and
discuss some of their important implications.

1.1.1 Postulate 1

An isolated quantum system is described by a vector in a Hilbert space. Two
vectors differing only by a multiplying constant represent the same physical
state.

Following the notation introduced by Dirac |1], we represent a vector by
a ket, | ).

A Hilbert space is a complex linear vector space equipped with the def-
inition of a scalar product and spanned by a complete set of vectors [2].
The meaning and implications of these properties of the Hilbert space are
explained below. They are crucial for relating the theory with experimental
observations.

Linear Vector Space. A Hilbert space is a complex linear vector space. We
assume familiarity with the notion of a linear vector space over the field of
complex numbers (c-numbers) [2]|. We recall that if [1;) and 1) are vectors
in a complex linear vector space then a linear combination ay|i1) + aslia)
for arbitrary complex numbers «q, s is also a vector in the same space. A
set of vectors |¢1), -+, |tb,) is said to be linearly independent if

n

Z(Yil'l/‘,’> :() (11)

=1
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implies a; = 0 for all i = 1,...,n. The maximum number of linearly inde-

pe

ndent vectors in a linear vector space is called its dimension.

Scalar Product. To say that the Hilbert space is a Euclidean or scalar

product space means that it is possible to associate with every pair of vectors

|¢) and [¢) in it a complex number, denoted by (¢|v¢)). such that

1

— W

. (olY) = (¥|g)*. where * denotes the operation of complex conjugation:
) = e1|v1) + colth2) then (d]Y) = e1(o[yr) + ca(B|e2):

- (YlY) > 0;

. (¥[y) = 0 if and only if (iff) [) = 0.

In the following we list some consequences of these axioms.

The scalar product associates with a vector | ) its dual (| called a bra [1].
The non-zero positive number ||[1)|| = /(¥[t)) is called the norm or the
length of the vector. Since two vectors differing only by a multiplication
factor represent the same physical state, we can represent a physical state
by a vector of a fixed, say unit, norm if the norm is finite. Hence. [¢) is
physically an acceptable vector if its norm is finite i.e. if

(Y[y) < 0. (1.2)

The vector |¢)(¢|y) is the projection of a vector [1) along the vector |¢).
The scalar product (¢|¢) is a measure of the overlap between the vectors
[¢) and |¢). If (¢]y) = 0 then [¢)) and |¢) are said to be orthogonal to each
other.

Two sets of vectors |¢1), -+, [¢,) and [¢1), -+ -, [¢,) are said to be orthonor-
mal to each other if

(Bilw;) = bij, i,j=1,...,n. (1.3)
A set |ey), - |en) of vectors is said to be orthonormal if
(eilej) = bij, ,j=1,...,n. (1.4)

An important consequence of the axioms defining the scalar product is the
Schwarz inequality

(Do) (W) = (dlv)(¥]9), (L.5)

where the equality holds if and only if the two vectors in question are
linearly dependent i.e. if

[¥) = ulé), (1.6)

1 being a complex number. In order to establish this, show that the min-
imum value of (¥(p)|¥(p)), where |&) = |¢) — ul¢), as a function of u is
W) — [(]|p)12/(p|p). The requirement that this value, due to axiom 3
of the scalar product, be positive leads to the Schwarz inequality in (1.5).
Also, according to the axiom 4 above, (¥ (u)|¥(p)) = 0 iff |&(u)) = 0 i.e.
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iff (1.6) holds. It may be verified easily that (1.5) then holds with equality.
In a similar way we can derive the generalized Schwarz inequality

det((d’pld/‘u)) >0, (17)

where det((1,[1,)) is the determinant of the matrix constituted by the
elements (1, |1,), p,v = 1,...,n. Invoking the fact that the determinant
of a matrix is zero if its rows (or columns) are linearly dependent, it follows
that the equality in (1.7) holds iff |¢,) are linearly dependent.

Completeness. In a scalar product vector space of finite dimension n, there
always exists a set of n linearly independent vectors {|t;)}, called the basis
vectors, such that any vector |1)) can be expressed as a linear combination [2],

) = > dilth). (1.8)

The complex numbers {d;} in a scalar product space may be determined
by taking the scalar product of (1.8) with the vectors {|¢;)} orthonormal to
{I1:)} to give d; = (¢i|1) so that
n
DEDMIDICADE (1.9)
i=1
The vector |¢) in an n-dimensional space is thus characterized by n complex
numbers {(¢;|¢)}. The column of these numbers constitutes a representation
of the vector in the given basis. The dual (| of [¢) is then represented by the
row constituted by the numbers {(|¢;)} = {{¢:|1))*}. Thus the representa-
tion of (| is obtained by the process of hermitian conjugation (interchanging
of rows and columns along with the operation of complex conjugation), de-
noted by f, of [¢): ([ = ().

The expansion (1.9) in a scalar product space is guaranteed if the space
is finite-dimensional. However, such an expansion need not exist if the space
is infinite-dimensional. In quantum mechanics, we are concerned only with
those scalar product linear vector spaces in which every vector is expressible
in terms of a basis. Such a space is called a Hilbert space.

Now, on invoking the fact that (1.9) is to be valid for an arbitrary [¢),
follows the completeness relation

n
D ol =1, (1.10)

i=1
where I is the identity operator defined below. If {|¢;)} is orthonormal, i.e.

if {|¢i)} = {|¥i)} = {lei)}. then (1.10) reduces to

> le)(esd = 1. (1.11)

=1
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In our discussion so far we have assumed that the basis vectors are de-
numerable. There are, however, occasions which require us to work with a
basis labeled by a continuous parameter. Consider an orthonormal set of ba-
sis vectors [€) labeled by a real continuous parameter €. The condition of
orthonormality then reads

(€'le) = a(¢ - €, (1.12)

d(x) being the Dirac delta function. If @ < £ < b then the analog of the
expansion of a vector in terms of the basis vectors is

b
) = / (€1) 1€) de. (1.13)

A vector [1) in a continuous basis is thus represented by the function ¢(£) =

(&|) of a real variable &.

Operators. The action of a force transforms the state of a system. A trans-
formation of a state of a system may be described by a rule, called an operator.,
that associates with a vector in the space another vector in the same space.
If, for example, an action transforms |1) to |¢) then we write

Aly) = |9) (1.14)

where the operator A defines the rule of transformation. We distinguish an
operator from a c-number variable by a caret on the former. An operator A
is linear if, for any complex numbers ¢; and ¢s.

A(mw) ¥ cz|¢>>) - (<,-1A|ut~> + <~2A|¢)>). (1.15)

We shall be concerned only with linear operators.

If Ajy)) = |1) for all [¢) then A is called the unit or identity operator.
often denoted by I. Since I acts like the scalar unity. we do not dress it with
a caret and even denote it by 1.

In order to obtain a c-number representation of an operator A, consider
an orthonormal basis {|e;)}. Rewrite A as IAI where I is the unit operator
and express I in terms the completeness relation (1.11) to get

n
/i = Z <87j

i,j=1

Ale;) lei)(e;]- (1.16)

The operator A may be represented by an n X n matrix constituted by the
complex numbers (e,'|A|e;,-) (@9 = 1ye0um; n). On operating (1.16) on an ar-
bitrary vector [¢), it follows that A|w) is r(—*pres'ented by the product of the
matrix (e ,|A|C ) representing A with the column (ej]10) representing |¢). It is
straightforward also to show that a product AB is represented by the prod-
uct of the matrices representing them. Thus, the correspondence between
vectors as columns and operators as matrices is not only notational but also
operational.



