R hi +

(R3IhR)

SOFTWARE
PRrocess
IMPROVEMENT

Practical Guidelines
for Business Success

Sami Zahran

A
W ¥ ADDISON-WESLEY

Sami Zahran

MM T b W ORR A

China Machine Press

e

A

E
<

S

Sami Zahran: Software Process Improvement: Practical Guidelines for Business Success
(ISBN: 0-201-17782-X).

Copyright © Pearson Education 1998.

This edition of Software Process Improvement: Practical Guidelines for Business Success,
First Edition is published by arrangement with Pearson Education Limited. Licensed for sale in
the mainland territory of the People’s Republic of China only, excluding Hong Kong, Macau, and

Taiwan.

7 3 SCELE AR B Y5 [Pearson Educationd A4 #F H hEE A AU R . A IR E P
A, AELMEM F XE RS BABNE.
IR B RR R BRAE o KR X 8 (A EEEE . W], AKX),

AL A, BT

AHREIZS: B¥F: 01-2003-1009

BHER®mE (CIP) HiiE

W REGHE (U) 4L%F (Zahran, S.) . -JbE0: YU Tk RRAE, 2003.4
(BRI E)

43 : Software Process Improvement: Practical Guidelines for Business Success
ISBN 7-111-11809-X

[.#& D40 WL B&HFFER-FLX N.TP311.52

rb [A B 5 AE CIPER B 4% (2003) 350172285

U Tk HARAE ClemmmmR a XS 22 % WEST 100037
RAEGE: miER

AL EEEN R PR A B ENRI - FEBEIL R RATHRAT
2003 4 4 A% 1 KX - 2003 4E 6 A% 2 KENKY

787mmX 1092mm 1/16 - 30.25 EN5k

EN%: 3 001-5 000 A

SEMr: 49,00 7T

JUAS, mAEET. B, BT, B RTHESR

{EhiRE BE

XEE XU, B KR EEHMES TR FARRE, E87EREBRB#NE
ORI T MR E WERXHEMES, FXREEFERARRBNATEZERZRE
. SR, ErRkemRS, ERAT LR SEHEFERREFHLE S, HEVERS
AT 2 B 1L S [F B B AR R BE BT 2, Rt =SB EEE, RAOUER THR
HVERE, BIBE TERWEE, BREFERAMTE, XBF%¥E M, HMEHASEHEA N
HE T DR

A, ERRGERMARBMMNHEZ T, RETTEN LRI, MELAAWTFKH &
Y. ARV E R MR EREE LS, Rk, ML BB REHRT R LD
BRERE, ARERGEBEARAKRENEZE . MEARBPLHIRT, XEFREERELT
BURF R YL ERBPENS/EM A TS HEBEEZL. Bik, 51#—#EMEFEIT
B RE BT F LR RERRAESNER, GRSHAEN. BREAEMT
R—RAKFER LB Z B

P Tl R EE UE B AR A AR R EIRE “HREANHERS . B19984FH 145,
HENF K TAEEANE T #ik, BRESMEZEM L, E@LILERNAME 1, KIS
Prentice Hall, Addison-Wesley, McGraw-Hill, Morgan Kaufmann§itt R & & HRA R E V. TR
HHEEXRR, WENMIA BB E Fh# 4 Pk H Tanenbaum, Stroustrup, Kernighan, Jim
Gray% K& R — M EIAES, Lh “HEIBEAS" WU, BHEEET . IRRE
. REASCEMHE, WEERRTXENER SO FERE,

“SHEHRFEAE” MR TESRR TENIMEENS N EE, BANERAMURETHE
HIERETE T, AT HARE 7 B MERAN TIE; MEBMEE O Y RERESRESTH
e, ARETBARBHPERERF. &4, “HEIRZEAR ELURTER
REPEEZETN LT RN OM, FEFZEERANEXBM NS E BE, it
ITERBEITT TIREAHER.

BEE R R P S B MBM SR ZE R, BE FxESMTEOLEM 07 K AR
WA THF B . A, EAREMRGIHBMAE, £ “FEHEF” HARUZT
R = RSB R ER . BR “THREVRIEAR" ZAh, XEENRRA B, N Bk I RE
CREFRRBE" F, 5l#E2XETHEFM S “Schaum’s Outlines” RIIHM “£KE
PESIRR R, AT RIEX =EABHAEME, REWR T B AERMEMIIRS, #
BEARABEE T PER R, ERKE, BEXE, BRI RY¥. EEX¥,. LBZEKRE.
MR #LRY . PEBERE, BRETIARY. AZGERY. PEARKE. 4LF
%ﬁﬁfk%\KEM%kﬁ\¢Mﬁ$\ﬂﬁﬁﬁlk¥\ﬂMﬁ#\m%I¥%*E@

FEBZSWENEH L EENESAKREANBFIMETEINENSENEL FEHAR "%
KIEFERAR", AR WA RS .

X=FENBEMNHEFBREOERASIMNEEM NS E, AEARKKITTEYL KT LT
HEESITEN ., HPiFLSHEMYE AM. L T., Stanford, U.C. Berkeley, C. M. U. it F 218
KEFFRA. FMURETRFRIT. RSN . BERE. (HEIKRSEH ., BEE. &R
B, BHTE. BB¥. EF5ME. BEBFESFENRETREIS LR RHEORE,
mHEERFa—AREAESRITEZF . ANIZ=1TFMNAE. FHEHLtF0ILE
FrEfeRk . fEX SR RGEEN T RIENIRTIZT, EELEETEIRZNERTHEE
MAZ .

WBHIEE . RN . —ROEE. MEROFR., HANRE, XHERERMNOE
BETREHRIE, ERMNWEFRRERE, MRBEHERLERRNEDX - ARBEFNOE
BB, BEMHERERRIMNNEERS MRS . LELRWGEE TR RATH TR
BWEATIRIE, RITWBKRFTENT :

B FHpfE: hzedu@hzbook.com
BEZRHIE: (010) 68995264

BR AL : TR E L EREELS
HRBU4AS : 100037

EXERIERS

(i RAETITT)
t g 3 ¥ A ¥ A
% FINEF 28 2 E

B % FRR FaEd WmAH
TR BEX BaF Amit
R &3 N & 4 e A
Al EK EHR EEL

x £ 8 2B 35 A=

I dedicate this book to Watts Humphrey — the ‘prophet’ of the
Software Process.

This book is a contribution towards the Software Engineering
Institute’s vision:

‘Bringing engineering discipline to the development and
maintenance of software’.

Foreword

by Watts S. Humphrey

It is a pleasure to introduce this book by Sami Zahran. He covers an important
topic in an interesting way. I enjoyed reading the book and I am sure you will
as well. In addition to talking about process improvement, Sami provides
useful guidance from a practitioner’s perspective. He clearly explains the
purposes and methods of process improvement and he compares the leading
methods, their principal features and their characteristics. Most importantly,
he discusses the issues that you, the user, will face as you pursue process
improvement on your own.

As you read this book and think about what Sami says, I suggest you keep
some special topics in mind. They should provide a useful perspective and help
ensure that your process improvement efforts are most effective.

In the change business, there is something called unfreezing. People are
naturally resistant to change and unfreezing breaks through their resistance. It
shows the engineers and their managers what is wrong today. It makes them
even more unhappy with the current situation, and convinces them that there
are better and more effective ways to do their jobs. When the engineers and
their managers see all the key problems in one big pile, they realize they really
must do something about them.

A properly done assessment walks through the issues in great detail,
breaks the ice, and starts unfreezing. Then you can begin to talk about what to
improve. Until you get to that point, all improvement talk will be just that —
talk. And nothing much will happen. This is why the assessment process was
invented. By involving the engineers and managers, and asking them what is
wrong and what can be improved, the assessment becomes a way of learning
from the organization. When you get their ideas on what should be improved,
the people are most likely to support and participate in the change process.

XV

XVl FOREWORD

Another area of misunderstanding is the role of Capability Maturity
Model (CMM)SM goals. In first developing the CMM, we did not want to
block good ideas. The software community is full of creative people. Once they
are involved, they will see many ways to improve things. Also, software
engineering is a relatively new and rapidly changing field. What seems
appropriate today could be hopelessly out of date in just a few years. A CMM
that is too specific could easily inhibit change instead of encouraging it.

This is why the real CMM objective is the goals; everything else is
examples of how the goals could be met. I thus suggest that you keep your eye
on the goals, and use all the detail for guidance on possible ways to achieve
them.

Another difficult issue is maturity ratings. These can be very helpful in
focusing attention on immediate priorities. While they are an important means
of communication, they can also cause the wrong behaviour. People can easily
lose sight of the principal objective of improving the process. They begin to see
the next CMM level as the target.

When people focus on the level, they think of assessment as a way to
measure the level. Then they become concerned with the accuracy of the CMM
as a measurement tool. Some even seek sophisticated measures that will
precisely determine the maturity level. This is nonsense. Software processes are
far too complex to measure with one or even a few numbers. The critical need
is for a framework engineers and managers can use to examine and talk about
their processes. Then they can use their detailed knowledge of the organization
to identify the key problems, and to decide what and how to improve.

The level measure provides so much value that we decided to keep it. The
need, however, is to focus on those few improvements that will make a
difference right now. The CMM can guide you in identifying these
opportunities. Other than that, don’t worry about the maturity level. If you
continue working on process improvements, the level will follow. If you focus
on the level, however, improvement is much less likely.

To keep this perspective, I suggest you do the following:

1 Use maturity levels to do assessments and evaluations, and to set priorities

2 Keep your objectives focused on making specific improvements

3 Make improvement the job of every manager and track his or her
performance against these goals

4 Plan to get the highest-priority key process areas (KPAs) in place as soon as
possible

5 When those plans are well along, plan and implement the next most
important KPAs.

If you do this, when you next do an assessment, you will see significant
improvements. And the levels will take care of themselves.

Watts S. Humphrey
Sarasota, Florida, USA
April 21, 1997

Foreword

by Mark C. Paulk

Anyone familiar with computers is familiar, often painfully so, with the
‘software crisis’. Our ability to build software-intensive systems is orders of
magnitude greater today than it was five decades ago, but our appetite for
software has grown even faster, and the software industry is still evolving from
a craft to an engineering discipline. Historically, the result has been the chronic
software crisis: software is (almost) always later than expected, more expensive
than planned, and with less functionality than hoped. There is hope, however,
that we have turned the corner on the software crisis.

If we are overcoming the software crisis, one of the major reasons is the
topic of Dr Sami Zahran’s -book: software process improvement. Peter
Freeman stated in the foreword to Watts Humphrey’s Managing the Software
Process that ‘The ‘“‘software crisis” is dead!” and that Humphrey’s book was
one of the best signs of that change.

Eight years later, the increasing ability of mature software organizations
to deliver high-quality software products on budget and on schedule shows
that Freeman was correct — at least for that part of the software community
that has adopted a systematic approach to software process improvement.

Unfortunately only a minority of software organizations have chosen to
pursue systematic improvement. The reasons are manifold, but perhaps the
crux of the problem is that disciplined software engineering is easy to describe
but devilishly hard to do.

Much of the problem lies in the fact that ‘changing the way we do things
around here’ requires behavioural change across the board. True software
process improvement requires that management, especially senior manage-
ment, take an active role in process improvement. It also requires that the
workers in the trenches participate in defining and implementing usable and

Xvii

XVIlII FOREWORD

effective processes. This means a diversion from the ‘real work’ of shipping
product. If software process improvement is considered a ‘silver bullet’ rather
than an investment in the future, then it will wind up being another ‘flavour of
the month’ fad, and its value will never be attained.

Improvement also implies facing a sometimes unpleasant reality. Some of
the pain of the software crisis is caused by human nature. In response to the
question ‘Why does software cost so much?’, Jerry Weinberg replies
‘Compared to what?”. Tom DeMarco suggests that this assertion is a
negotiating position; people complain because they know we work harder
when they complain. In one survey, most of the responding professional
software managers reported that their estimates were dismal, but they weren’t
on the whole dissatisfied with the estimating process! All too many software
professionals would agree with DeMarco, but many software managers and
customers are vitally interested in understanding how to manage software
projects more effectively.

Customers and managers who use schedule pressure and overtime as
motivational tools have to deal with the resulting quality trade-off. Customers
and managers who are interested in truly managing software projects — and
facing up to a sometimes unpleasant reality — have available a number of
approaches for systematically improving the process for developing and
maintaining software. The results of successfully applying these approaches
give us hope that the software crisis is finally coming to an end.

Perhaps the best-known approaches to softwaie process improvement
are the International Organization for Standardization’s ISO 9001 standard
for quality management systems, the Software Engineering Institute’s
Capability Maturity Model for Software, and the ISO 15504 (frequently
referred to as SPICE) standard for software process assessment. These
approaches, among others, apply Total Quality Management principles to the
software process and are described by Dr Zahran in this book. Hopefully the
comments in this book will help the reader navigate the quagmire of
alternative approaches!

As the product manager for the Software CMM, I have a biased view of
the various approaches to software process improvement. We are incorporat-
ing a number of process implementation and management ideas from the
various standards and models described in this book in the next version of the
Software CMM. While I believe that the Software CMM is the best foundation
for software process improvement, and we are actively working to maintain
this position, any systematic approach to improvement can help an
organization succeed. Regardless of the approach chosen, process improve-
ment is becoming essential to survival in today’s highly competitive world.

The importance of high-quality software products cannot be overempha-
sized. Recent UK court decisions and proposed changes to the US Uniform
Commercial Code foreshadow a potential for legal action by dissatisfied
customers. The concept that software should be sold free of major bugs and
should work as intended, like other commercial goods, may be a major
paradigm shift for many software developers!

FOREWORD XIX

To survive, much less thrive, modern organizations must continually
improve all aspects of their business. Improvement in software-intensive
products and services is crucial and difficult. The challenge is to implement
good software engineering and management practices in the high-pressure
environment software organizations face. A disciplined and systematic
approach to software process and quality improvement, such as these models
and standards support, is necessary to survive and thrive.

Process improvement is not, however, sufficient for success. Other issues
are also fundamental, such as:

e building the right product — one that customers want to buy;

e hiring, selecting, and retaining competent staff;

e overcoming organizational barriers (for example, between systems
engineering and software staff).

An effective software process improvement programme should be aligned with
other organizational initiatives, perhaps under a Total Quality Management
umbrella, to address the totality of business issues that are related to process
improvement.

Regardless of the approach selected, building competitive advantage
should be focused on improvement, not on achieving a score, whether the score
is a maturity level, a certificate or a process profile. Dr Zahran’s book should
help the reader understand the trade-offs and issues associated with effective
software process improvement.

Mark C. Paulk

Software Engineering Institute
Pittsburgh, Pennsylvania, USA
22 September, 1997

Preface

Software development is a challenging endeavour

Developing reliable software on time and within budget represents a difficult
endeavour for many organizations. As the role of software becomes
increasingly critical for business as well as for human lives, the problems
caused by software products that are late or over budget, or that do not work,
become magnified. Loss of life or widespread inconvenience caused by
unreliable software makes big headlines in the news media. It is estimated that
in the last few years around 4000 people have died as a result of software
defects. In a modern aircraft, if software stops functioning for more than 200
milliseconds, the aircraft is irrecoverable. In June 1996 a European Space
Agency rocket carrying a number of European satellites exploded seconds after
its launch. The accident was attributed to software failure. A few years ago,
unreliable software made big news in the UK, from emergency services
disasters to social security payment blunders, let alone the failure of a large
project for the London Stock Exchange. Improved software quality is essential
to ensure reliable products and services, and to gain customer satisfaction. The
US Government Accounting Office (GAO) reported recently on ‘cost rising by
millions of dollars, schedule delays of not months but years, and multi-billion
dollar systems that do not perform as envisioned’ (Paulk ez al., 1994).

CASE tools are not enough

Stories about failure of software projects that still excite the press are in sharp
contrast to the inflated promises of CASE tools that filled the same press back
in the mid and late 1980s. The industry has realized that tools are not enough.

XXI

XXIl PREFACE

One fact that the software industry has established is that ‘a fool with a tool is
still a fool!””. Usually business solutions have three main aspects: people,
process, and technology. It is evident from industry experience that, when
implementing a business solution or introducing a change, the least
problematic aspect is usually technology, while processes and people are the
critical factors that could make the difference between success and failure.
People are an integral part of the process, since they are the enablers of the
process activities, process monitoring and process management.

Competent individuals are not enough

The software industry’s experience with CASE tools has proved that the main
reason for failing software projects has little to do with technology and tools,
and much to do with lack of process discipline. Software development is a team
effort. In the absence of process discipline, a team may follow different
processes, or more commonly use no defined process at all. In such a case it will
be ‘like a ball team with some team members playing soccer, some baseball,
and others football. Under these conditions, even the best individual players
will form a poor team’ (Humphrey, 1995). In contrast, a team that follows
consistent process definitions can better coordinate the work of individual
members, direct the efforts of the team members towards the common goal and
more precisely track the progress.

Process focus offers better chances for success

Software development as a discipline has existed for more than four decades,
but we have not yet turned the software industry into an engineering discipline.
The recent focus on the software development process is a step in the right
direction. Only by creating a disciplined process for software development can
we manage and control the quality of software products. Organizations are
realizing that their fundamental problem is the immaturity of their software
development process. All the evidence is that investing in software process
improvement promises to offer better hope for the software industry, as it has
done for other industries such as manufacturing. Also, there is a difference in
motivation between a software movement based on tools and one based on
process improvement. Process improvement is the responsibility of the
organization developing the software and there are no tool vendors with
vested interest. The use of tools to automate a chaotic process will lead to more
(automated) chaos. Examples are abundant, but one striking example outside
the software industry is the shipping of sophisticated armoury and destructive
weapons to a chaotic war between two tribal factions in a primitive country.
These ‘technological tools’ are not likely to result in stability, but will probably
increase human suffering. Experience has shown that introducing new
technology and tools in an immature or undisciplined environment is likely
to increase the chaos. A software project without defined processes for control
and management (for example quality assurance, configuration management

PREFACE XXIlI

and project management) will not benefit from tools. Dumping tools into such
a project is likely to increase the chaos, to speed up the production of faulty
software and to multiply user dissatisfaction. Such projects could ultimately
end up as a disappointment to all concerned. Such disappointments take
various forms, such as wasted effort, time, money and resources, and possibly
unavoidable disasters.

Software process movement: the second wave in the
software industry

Structured methods were developed in the 1970s to cater for the increasing
demands and complexity of software, and consequently the increasing size of
development teams. That was the first wave of the software industry. It came as
a response to the growing need to build complex interactive commercial
applications using shared systems and to make such systems maintainable.
Structured methods focus on ways to formalize the definition of requirements
and on the traceability of requirements through design and build into finished
systems. Some of these transformations have been assisted to varying degrees
by automated tools. Although this was the beginning of transforming software
development from a ‘cottage industry’ to mass production, it was not quite
enough. Real issues that make or break software projects, such as project
management and requirements management, were not a mainstream focus.
The software process movement came as a response to the increasing rate of
failure of software projects. Focus on process started through sponsorship by
the US Department of Defense (DoD) which funded the Software Engineering
Institute (SEI) to come up with a method for assessing the capability of the
Deparment’s software subcontractors. Watts Humphrey first joined the SEI in
an undefined position and in a couple of months was named Director of the
Process Program. Since that time the process message coming out of the SEI
has gone from strength to strength to influence the whole software industry
worldwide.

One can easily trace the roots of the software process to the quality
movement that started in the 1930s and prevailed throughout the 1970s, 1980s
and 1990s. The concepts of quality gurus such as Edwards Deming and Philip
Crosby gained popularity across manufacturing industry all over the world.
Watts Humphrey applied those same quality principles to software
development. The process maturity movement prepares the way for the third
wave of the software industry: ‘software industrialization’. In the third wave
software development will become like an assembly and manufacturing
process. Enabling technologies for the third wave include object-oriented
technology and reusable component libraries. It will then be possible to
assemble software from standard reusable components. A critical enabling
factor for the third wave is a disciplined software engineering process with
predictable quality, schedule and functionality.

XXIV PREFACE

Aims of this book

This book offers a pragmatic approach to the effective implementation of
software process improvement. It provides guidelines for creating process
support infrastructure, and makes the case for adopting a process view to
software development. It outlines a practical approach for setting up a
disciplined and continuously improving software process environment. In
summary, the book presents a framework for establishing an effective
environment for continuous software process improvement.

The arguments in the book put emphasis on the people aspect.
Understanding and following the process is as important as the process
definition. Another equally important emphasis is on the impact of process
discipline on team performance and business goals and objectives.

The concepts offered in this book are the result of more than thirty years
of the author’s practical work in the software industry. Most of those years
were spent in practical experience and research on different facets of software
engineering. This included experiencing the pains and pleasures associated with
developing software and managing software projects. The projects covered
business and industrial applications for a variety of industry sectors ranging
from oil, banking and government, to defence, manufacturing and aerospace.
They also included involvement in the development of operating systems,
database management systems, data dictionary systems, transaction processing
systems and a large number of commercial applications. Having lived through
both successes and failures of software projects, I readily identified with the
process message and teachings which I first received at the Software
Engineering Institute, Carnegie Mellon University, in February 1992. Since
that time my dedication to the software process has been uninterrupted.

Intended audience

This book is relevant to and readable by a wide audience, including those who
already have some knowledge of software process assessment and improve-
ment and those who have little knowledge beyond knowing that the subject is
significant for them. In other words it contains new ideas and approaches that
will interest those who have prior knowledge, and is simple and readable -
enough to interest those who do not. In particular, it is aimed at the following
special interest groups.

Software engineering managers and professionals

The whole book should be of interest to everyone involved in software
engineering activities including management, coordination, development and
control. This includes business managers with interest in software, project
managers, team leaders, software engineers, and software support functions,
such as configuration management, quality assurance and process improve-
ment teams. Also the book is suitable for inclusion in graduate software
engineering degrees within a unit on software process improvement.

PREFACE XXV

Process improvement teams i

The first part of the book discusses process thinking in generic terms. It should
be beneficial to all those interested in process improvement activities including
business process re-engineering, business process redesign and business process
improvement.

Process research scientists

The book offers a holistic approach to a process improvement environment.
The concepts and discussions in the book are intended to provide inspiration
for further research effort on process modelling and quality concepts.

Structure of the book

The book is structured in five parts, followed by a glossary and list of
references.

Part 1: Process thinking

This part lays the intellectual foundation for the rest of the book. It defines and
explains process thinking, relates the concepts discussed to process discipline,
and describes the characteristics of an effective process environment. It also
relates these concepts to the software process environment. Part 1 contains four
chapters:

Chapter 1. Process thinking

Chapter 2. Process discipline

Chapter 3. Effective process environment

Chapter 4. Process maturity: the second wave of the software industry

Part 2: A framework for software process improvement

This part describes the framework proposed for the software process
environment. It describes the components of the framework, the process
infrastructure, process improvement roadmaps, process assessment methods,
and process improvement plans. This framework should lead to a continuous
process improvement environment. Part 2 contains five chapters:

Chapter 5. A framework for software process improvement
Chapter 6. Software process infrastructure

Chapter 7. Process improvement roadmaps

Chapter 8. Fundamentals of software process assessment
Chapter 9. Software process improvement action plan

Part 3: Making software process improvement happen

Part 3 describes strategies and plans for planning and launching a software
process improvement programme in your organization. It discusses steps for
converting the assessment results into an improvement plan and highlights the
need for measuring the benefits of software process improvement. It discusses

