Karen A. Lemone Asse'mbly Language
Programming for the
VAX-11

Martin E. Kaliski

Foreword by Gerald M. Weinberg

Little, Brown Computer Systems Series

Assembly Language

Programming for the
VAX-11

Eiwde, Brown Computer Systems Series

Gerald M. Weinberg, Editor

Barnett, Michael P., and Graham K. Barnett
Personal Graphics for Profit and Pleasure on the Apple II Plus Computer

Basso,; David T., and Ronald D, Schwartz
Programming with FORTRAN/WATFOR/WATFIV

Chattergy, Rahul, and Udo W. Pooch
Top-down, Medular Programming in FORTRAN with WATFIV

Coats, R. B, and A. Parkin
Computer Models in the Social Sciences

Conway, Richard, and David Gries
An Introduction to Programming: A Structured Approach Using PL/I and PL/C, Third
Edition ’

Conway, Richard, and David Gries
Primer on Structured Programming: Using PL/I, PL/C, and PL/CT

Conway, Richard, David Gries, and E. Carl Zimmerman
A Primer on Pascal, Second Edition
Cripps, Martin
An Introduction to Computer Hardware

Easley, Grady M.
Primer for Small Systems Management

Finkenaur, Robert G.
COBOL for Students: A Programming Primer

Freedman, Daniel P., and Gerald M. Weinberg
Handbook of Walkthroughs, Inspections, and Technical Reviews: Evaluating Programs,
Projects, and Products, Third Edition ‘

Gravheal, W , and Udo W. Pooch
Simulaiion: Principles and Methods

Greenfield, S. E.
The Architecture of Microcomputers
Greenwood, Frank
Profitable Small Business Computing
Healy, Martin, and David Hebditch
The Microcomputer in On-Line Systems: Small Computers in Terminal-Based Systems
and Distributed Processing Networks '

Lemdne, Karen A,, and Martin E. Kaliski
AssemBly Language Programming for the VAX-11

Lias, Edward .

Future Mind: The Microcomputer—New Medium, New Mental Environment
Lines; M. Vardell, and Boeing Computer Services Company

Minicomputer Systems
MEERAW, B. J.

Programming Byte by Byte: Structured FORTRAN 77

Mills, Harlan D.
Software Productivity

Contents

11

12

10.2 The Assembler Problem in General Terms 146

10.3 Modular Design Issues for Assemblers 149

10.4 Coordinating and Interfacing the Modules—I 151

10.5 Coordinating and Interfacing the Modules—IT 154

10.6 The Data Base for the Assembler 161

10.7 The Calling Net Revisited 163

10.8 Putting the Pieces Together: A Summary 166
Exercises 167

Macroprocessor Design Issues

11.1 Introduction 171
11.2 The Basic Features of Macroprocessors 171
11.3 Macroprocessor Design Issues: General 174
11.4 A More Detailed Look at Modules and Data Base 177
11.5 Recursive Macro Capabilities 180
11.6 Concluding Remarks 181
Exercises 181

Independent Assembly and Linking Issues

12.1 Introduction 185
12.2 Mechanisms: Independent Assembly/Linking Capacity 186
12.3 Linker Design Issues in General 187
12.4 The Relocation and Linkage Directory 189
12.5 Modular Design Issues for Linkers 192
12.6 Concluding Remarks 195
Exercises 195

Appendix A: Terminals, Editors, and Programs
Appendix B: Design Issues Not Examined in Chapter 10

Appendix C: A Subset of VAX/MACRO for Trial Assembler
Design: SUBMAC

Appendix D: More Design Features for Macroprocessors
Appendix E: Adding Macro Features to SUBMAC
Answers to Selected Exercises

Bibliography

Index

XV

171

185

199
209

211
217
219
221
225
227

Foreword

Sometimes I worry that my position as Series Editor gives me too much power to
indulge my prejudices. For instance, it’s very easy for me to reject a book on
teaching your turkey to program in FORTRAN, because I'm slightly prejudiced
against turkeys, substantially prejudiced against FORTRAN, and completely
prejudiced against teaching turkeys to program.

On the other hand, it was very easy for me to accept Assembly Language
Programming for the VAX-11—and not just because it isn’t about FORTRAN or
turkeys. Lemone and Kaliski have written a superbly crafted course in assembly
language for readers with some prior experience in programming higher level
languages. Their effort thus appeals simultaneously to three of my long-standing
predilections—for good writing, for assembly language, and for teaching assem-
bly language to anyone seriously interested in the practice of programming.
Perhaps I'd better explain my bias in favor of this book, so you can judge for
yourself.

It may be difficult to explain my prejudice in favor of good writing because, in
the more technical subjects, good writing is so rare that some readers may never
have seen it. In reading about a subject like assembly language, many readers get
turned off because the writing is poor, not because the subject is difficult. They are
novices, and they have no way to separate the dancer from the dance. They simply
put down the book and give up on the subject.

But teachers who adopt Lemone and Kaliski’s Assembly Language Program-
ming for the VAX-11 don’t have to fear that the writing is going to turn the students
against the course. The book is written clearly, with precision, and at just the right
level. It is comprehensive without being superficial, detailed without being trivial,
and altogether pleasant to read.

How can a book on assembly language be “pleasant to read”? That’s my

ix

Foreword

prejudice again! Assembly language was my first language, and my second and
third. The first book I ever wrote was on assembly language, as was the first
computer course I ever taught. These experiences do give me a bias in favor of
assembly language that some may not share, but on the other hand they also give
me a prejudice against any author who mistreats assembly language. I find
Lemone and Kaliski to be sensitive to both the opportunities and limitations of
assembly language. If this is prejudice, then I plead guilty.

Assembly language is not just fun to read about—it is an essential part of the
education of any true computer professional. The first assembly language course is
a pivotal course for the budding computer scientist or electrical engineer. In fact,
assembly language is pivotal precisely because it is the meeting ground between
the two disciplines. Not every teacher may agree with this prejudice of mine, but
after more than a quarter century of training both computer scientists and en-
gineers, ’m not going to be talked out of it easily. I've seen too many students
pulling it all together for the first time in the assembly language course.

And pulling it all together is what Lemone and Kaliski do. I particularly like
their treatment of assembler design issues as a way of making the course into
something more than an unordered collection of random facts. The student who
works through Assembly Language Programming for the VAX-11 will have a real
feeling of accomplishing something worthwhile, and will be well prepared to
move in any one of several different directions for more depth—hardware design,
design of languages, design and implementation of translators, or specific assem-
bly languages on other machines.

So if you are teaching or learning assembly language on the VAX-11, I
recommend that you use Lemone and Kaliski’s book. But since I am prejudiced,
why don’t you see for yourself?

Gerald M. Weinberg

Preface

This is a two-part text about assembly language programming in the VAX/
MACRO language. Unlike many texts on assembly language that are concerned
solely with the assembly language per se, this text also addresses the design of
assemblers, macroprocessors, and linkers. It is divided into two stylistically
different parts.

In Part I the fundamentals of assembly language programming in the VAX/
MACRO language are discussed. It is aimed at the beginning assembly language
programmer, conforming with current ACM recommendations concerning intro-
ductory assembly language programming courses.

Chapter 1 introduces the basic vocabulary and concepts of assembly language
programming. It is a learn by doing chapter that encourages the reader to think in
assembly language terms and serves to motivate the ensuing discussion in Chap-
ters 2 and 3. In Chapter 2 the VAX organization and architecture are discussed.
Chapter 3 covers the binary, decimal, and hexadecimal number systems and
describes the ways that data can be stored in memory. Data storage directives are
introduced in this chapter. _

Chapter 4 describes the various addressing modes in VAX/MACRO and their
uses. The instruction set is also introduced. After having completed Chapter 4, the
student should be able to write simple programs in the VAX/MACRO language.

Chapter 5 describes some fundamental assembly language programming con-
structs, relating them to analogous higher-level language constructs (in FOR-
TRAN, BASIC, Pascal, and pseudo-code). Topics such as assignment statements,
conditional statements, loops, and array operations are addressed. Chapter 5 is the
heart of Part I.

Chapters 6 and 7 discuss, respectively, macros and subroutines/procedures.
The reasons for using these techniques are examined, and through the examples of
these chapters the material of Chapters 4 and 5 is solidified. Input/output program-

xi

e

Preface

ming is studied in Chapter 8. Because this chapter is highly dependent upon the
VAX/VMS operating system, the reader may prefer alternative material on input/
output widely available. Chapter 9 provides an introduction to more advanced
techniques in assembly language programming, such as conditional assembly and
character string manipulation,

The flavor of the discussion changes in Part II of the text: Part II’s system
viewpoint complements the user’s point of view.

Chapter 10 is concerned with the basic issues of assembler design, taking a
modular approach to the software design of assemblers. Chapter 11 extends the
methodology of Chapter 10 to macroprocessor design issues, and Chapter 12
discusses linker design.

The treatment of these topics in Part II contrasts with the basic approach of Part
I. The discussion is more general and the exercises more advanced. It is hoped that
this will serve to round out the reader’s knowledge of assembly language and
assembly language programming techniques.

There are five appendices to this text. Appendix A presents introductory
material allowing the reader to use the VAX/VMS operating system. Appendix B
highlights the design issues not covered in Chapter 10, as does Appendix D for
Chapter 11. Appendices C and E attempt to define a restricted version of VAX/
MACRO, called SUBMAC, suitable for use in system software design projects.

Acknowledgments

Although we have made every effort to eliminate errors, it is possible that some
still exist. If so, we would appreciate knowing about them. Feel free to write to
either of us or to the editors at Little, Brown. If possible, we will answer.

We would like to mention that the errors you don’t see were detected in
previous drafts by the following people (to mention just a few): Brian Alves, Susan
Blyde, Willy Burgess, John Crosby, Sharon Giggey, Chris Hacket, Whitney
Harris, Ellen Hollis, Lenny Leffand, Riad Loutfi, Steve Morth, Heyedeh Motalla-
bi, Duane Pawson, Hank Thoelke, Richard Tyson, Professor Tom Westervelt,
Mark Woodbury, and the entire Winter 81 6.130 class at Northeastern Universi-

" ty. We apologize to anyone we have left out! The errors that remain are all ours.

In addition, we would like to thank Professor Richard Carter for having the
courage to use this text in some of its previous versions and the people at
Massachusetts Computer Associates for sharing their expertise in computering.

This text was typed and edited on line by Laurie Reynolds, Jonathan Chappell,
Kathi Marks, Hank Thoelke, Audrey Aduama, and the authors. The excellent
drawings are by George Capalbo. Special thanks go to Hank Thoelke for his
unselfish help throughout this project.

Karen A. Lemone and Martin E. Kaliski

Part I

Contents

VAX/MACRO Assembly Language

Getting Started

1.1 Machine Language and Assembly Language 3
1.2 Thinking in Assembly Language 5
1.3 A More Complicated Example 9
1.4 Pragmatics 11
Exercises 12

Machine Organization: VAX Architecture

2.1 Introduction 15

2.2 Storage Elements 16

2.3 Memory 19

2.4 Registers 20
Exercises 22

Representation of Data

3.1 Binary, Decimal, and Hexadecimal Numbers 25
3.2 Representing Positive and Negative Integers 31
3.3 Representing Floating-Point Numbers 34
3.4 Representing Characters 35
3.5 Data Storage Directives 36
3.6 Assembler Symbols 39
3.7 Machine Code 42
Exercises 43

15

25

xiv

Part 11
10

VAX Instruction Set and Addressing Modes

4.1 VAX Instruction Set 47

4.2 Addressing Modes 66

4.3 Machine Code Revisited 74
Exercises 76

Common Programming Constructs in Assembly Language

5.1 Introduction 79
5.2 Assignment Statements 80
5.3 Control (Selection) Statements 81
5.4 Loops 82
5.5 Arrays 84
Exercises 88

Macros

6.1 Introduction 90
6.2 Defining and Using Macros 91
Exercises 96

Stacks, Subroutines, and Procedures

7.1 Stacks 97

7.2 Subroutines 101

7.3 Procedures 103

7.4 Calling Macro Procedures from High Level Languages
Exercises 110

Input and Output

8.1 Calling High-Level Language Procedures for /O 113
8.2 Using System Macros for 'O 113
8.3 Lib$get_input and lib3put_output 118

Exercises 120

Writing Good Assembly Language Programs

9.1 Introduction 123

9.2 Assembler Directives 124

9.3 More Advanced Instructions 131

9.4 Reentrancy and Recursion 137
Exercises 141

VAX/MACRO Systems Issues

Assembler Design Issues
10.1 Introduction 145

106

Contents

47

79

89

97

113

123

145

Contents

11

12

10.2 The Assembler Problem in General Terms 146

10.3 Modular Design Issues for Assemblers 149

10.4 Coordinating and Interfacing the Modules—I 151

10.5 Coordinating and Interfacing the Modules—II 154

10.6 The Data Base for the Assembler 161

10.7 The Calling Net Revisited 163

10.8 Putting the Pieces Together: A Summary 166
Exercises 167

Macroprocessor Design Issues

11.1 Introduction 171
11.2 The Basic Features of Macroprocessors 171
11.3 Macroprocessor Design Issues: General 174
11.4 A More Detailed Look at Modules and Data Base 177
11.5 Recursive Macro Capabilities 180
11.6 Concluding Remarks 181
Exercises 181

Independent Assembly and Linking Issues

12.1 Introduction 185
12.2 Mechanisms: Independent Assembly/Linking Capacity 186
12.3 Linker Design Issues in General 187
12.4 The Relocation and Linkage Directory 189
12.5 Modular Design Issues for Linkers 192
12.6 Concluding Remarks 195
Exercises 195

Appendix A: Terminals, Editors, and Programs
Appendix B: Design Issues Not Examined in Chapter 10

Appendix C: A Subset of VAX/MACRO for Trial Assembler
Design: SUBMAC

Appendix D: More Design Features for Macroprocessors
Appendix E: Adding Macro Features to SUBMAC
Answers to Selected Exercises

Bibliography

Index

XV

171

185

199
209

211
217
219
221
225
227

Part 1

VAX/MACRO Assembly Language

Chapter 1

Getting Started

1.1

This chapter introduces the VAX-11 computer and some vocabulary and concepts
of assembly language programming.

Readers familiar with a compiler language such as BASIC, COBOL, FOR-
TRAN, or Pascal are familiar with the way a set of instructions solves a problem.
These compiler languages deal with inputs and outputs and the algebraic manip-
ulations necessary to convert one (inputs) into the other (outputs). Compiler
languages operate on inputs and outputs; there is little need to know what the
computer is actually doing with the data. Languages such as assembly language
and machine language, however, operate more directly on the machine or the
machine parts. For example, arithmetic generally takes place in high-speed
storage locations called registers. In an assembly language or machine language
program, we refer to these registers directly. Thus, we need to know something
about registers—how many there are, which ones to use, how to refer to them,
what size they are, and so on. Most compiler languages make no mention of
registers at all. The compiler decides what registers, if any, to use. But any
discussion of assembly language or machine language must include an explanation
of registers and various other parts of the computer (known collectively as the
machine architecture). The VAX machine architecture will be described in
Chapter 2. This chapter defines the terms machine language and assembly lan-
guage and compares them with compiler languages.

Machine Language and Assembly Language

Machine language

Machine language is the computer's “native” language. There are only two
symbols in machine language. These are 0 and 1, which are called binary digits or

3

Chapter 1: Getting Started

bits for short (from binary digir). Each statement in machine language consists of a
sequence of bits called a bit pattern:

010101100000001011010000

An executable computer program is nothing more than a stored collection of bit
patterns. These bit patterns are stored in the part of the computer known as
memory. Each of these bit patterns may represent an instruction, a piece of data, or
even the location of an instruction or piece of data.

In the preceding example, the rightmost eight bits represent the instruction
called *“Move.” The next eight bits represent the datum “2,” and the leftmost eight
bits stand for “Register 6” (denoted by R6):

010101100000001011010000
NN el et

R6 2 Move

Thus the bit pattern for the statement “Move the constant 2 into Register 6”
contains an instruction (Move), a piece of data (2), and a reference to a machine
part (R6). Notice that the instruction must be read from right to left!

A separate component of the computer called the central processing unit
(denoted CPU) interprets these bit patterns that have been stored in the computer’s
memory. The CPU is designed to recognize what is an instruction and what is a
datum. It is the CPU that executes a machine language program that has been
stored in memory. That is, the CPU understands this machine language. Humans,
however, find such sequences of 0’s and 1’s somewhat incomprehensible and
quite difficult to remember. Dealing with bit patterns requires the programmer to
remember the numeric code for each instruction and the location in memory of
each data item—all in binary. For these reasons we do not write programs in
machine language if we can avoid it. Instead we write programs in a more
understandable form: assembly language.

Assembly language
In assembly language, as in compiler languages, a data item may be addressed

by a symbolic name such as a, min, result, and factorial. Also a descriptive,
mnemonic instruction is used instead of a numeric code.

ExamMPLE

movl #2,r6

is the VAX-11 assembly language code for the machine code of the previous
example. It is much easier to believe and remember that this means “Move a 2 into
Register 6.”

Unfortunately, computers cannot understand assembly language; they under-
stand only the bit patterns of machine language. Thus, before an assembly

1.2 Thinking in Assembly Language 5

1.2

language program can be executed, it first must be translated into machine
language. A program called an assembler performs this translation. (Part II of the
text discusses the design of assemblers in greater detail.)

Assembly Machine
language - Assembler — language
program program
ExampLE
movl #2,r6 — VAX-11 — 010101100000001011010000
assembler

There is exactly one machine language instruction for every assembly language
instruction.

Compiler language

In languages such as FORTRAN, BASIC, COBOL, and Pascal a program
called a compiler frequently translates the instruction into machine language.
Consider the FORTRAN statement a=2 and the Pascal statement a.=2.

a=2 — FORTRAN — Sequence of 0’s and 1’s
compiler

a:=2 —» Pascal — Sequence of 0’s and 1's
compiler

Thinking in Assembly Language

Calculating 2+3+4

Programming in assembly language is similar to operating a calculator. Each
data value must be entered and, in general, each operation such as addition or
multiplication must be performed separately. Compiler languages, on the other
hand, can frequently perform more than one operation in a single statement.
Consider the following assignment statement: ‘

result=2+3+4

Chapter 1: Getting Started

which multiplies 2 times 3, adds 4, and assigns the result to the variable named
result. (In some languages such as Pascal this would be written “result:=243+4".)
To accomplish this statement in assembly language, we must first enter the value
2. Register 6 will be chosen (at random) to hold this value. To enter the number 2
into Register 6:

movl #2,r6

The instruction movi tells the CPU to copy the number 2 into Register 6. Next,
multiply the contents of Register 6 by 3:

mull?2 #3,r6
and lastly,
addl3 #4,r6,result

adds a 4 to the contents of Register 6 and moves a copy of the sum to the location
whose symbolic name is result. The entire sequence is

movl #R,ré6
mull2 #3,1r6
addl3 #4,r6,result

and is one way of calculating 2+#3+4 and storing the answer at the location whose
name is result.

Instruction parts
Notice that there are two parts to each of the instructions above—an operation
and some operands (we will see two optional parts later):
movl #2,16
1 i
Operation Operands

Some operations end in 2 (e.g., mull2). This indicates that there are two
operands (e.g., #2 and R6). Similarly, an instruction ending in 3 has three
operands. For example, add!3 above has three parts to its operand—#4, R6, and
resulr. Note that some instructions (e.g., movi) have neither a 2 nor a 3, which
indicates a fixed number of operands. movl always has two operands.

Calculating a*b+c

Next, consider the more general case of calculating a*b+c and storing the
answer in result:

result=axb+c

In VAX assembly language this becomes

