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Preface

In the early 1920s M. Morse discovered that the number of critical points
of a smooth function on a manifold is closely related to the topology of the
manifold. This became a starting point of the Morse theory which is now
one of the basic parts of differential topology. Reformulated in modern
terms, the geometric essence of Morse theory is as follows. For a C*®
function on a closed manifold having only non-degenerate critical points (a
Morse function) there is a chain complex M, (the Morse complex) freely
generated by the set of all critical points of f, such that the homology of M,
is isomorphic to the homology of the manifold. The boundary operators
in this complex are related to the geometry of the gradient flow of the
function.

It is natural to consider also circle-valued Morse functions, that is, C>®
functions with values in S having only non-degenerate critical points. The
study of such functions was initiated by S. P. Novikov in the early 1980s
in relation to a problem in hydrodynamics. The formulation of the circle-
valued Morse theory as a new branch of topology with its own problems
and goals was outlined in Novikov’s papers [102], [105].

At present the Morse-Novikov theory is a large and actively develop-
ing domain of differential topology, with applications and connections to
many geometrical problems. Without aiming at an exhaustive list, let us
mention here applications to the Arnol’d Conjecture in the theory of La-
grangian intersections, fibrations of manifolds over the circle, dynamical
zeta functions, and the theory of knots and links in S3. The aim of the
present book is to give a systematic treatment of the geometric foundations
of the subject and of some recent research results.

The central geometrical construction of the circle-valued Morse theory
is the Novikov compler, introduced by Novikov in [102]. It is a general-
ization to the circle-valued case of its classical predecessor — the Morse
complex. Our approach to the subject is based on this construction.

We begin with a detailed account of several topics of the classical Morse
theory with a special emphasis on the Morse complex. Part 1 is introduc-
tory: we discuss Morse functions and their gradients. The contents of the
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first chapter of Part 2 is the Kupka-Smale Transversality theory; then we
define and study the Morse complex.

In Part 3 we discuss the notion of cellular gradients of Morse functions,
introduced in the author’s papers [113], [108]. To explain the basic idea,
we recall that for a Morse function f : W — [a,b] on a cobordism W
the gradient descent determines a map (not everywhere defined) from the
upper boundary f~!(b) to the lower boundary f~!(a). It turns out that
for a C-generic gradient this map can be endowed with a structure closely
resembling the structure of a cellular map. We work in this part only
with real-valued Morse functions, however the motivation comes from later
applications to the circle-valued Morse theory.

In Part 4 we proceed to circle-valued Morse functions. In Chapter 11
we define the Novikov complex. Similarly to the Morse complex of a real-
valued function, the Novikov complex of a circle-valued Morse function is
a chain complex of free modules generated by the critical points of the
function. The difference is that the base ring of the Novikov complex is no
longer the ring of integers, but the ring L of Laurent series in one variable
with integral coefficients and finite negative part. The homology of the
Novikov complex can be interpreted as the homology of the underlying
manifold with suitable local coefficients.

The boundary operators in the Novikov complex are represented by
matrices with coefficients in L (the Novikov incidence coefficients). One
basic direction of research in the Morse-Novikov theory is to understand
the properties of these Laurent series. The Novikov exponential growth
conjecture says that these series always have a non-zero radius of conver-
gence. A theorem due to the author (1995) asserts that for a C°-generic
gradient v of a circle-valued Morse function, every Novikov incidence coef-
ficient is the Taylor series of a rational function. This theorem is the basis
for the contents of Chapter 12. The reader will note that in general we
emphasize the C° topology in the space of C™ vector fields; we believe that
it is the natural framework for studying the Morse and Novikov complexes.

These results are then applied in Chapter 13 to the dynamics of the
gradient flow of the circle-valued Morse functions. We obtain a formula
which expresses the Lefschetz zeta functions of the gradient flow in terms
of the homotopy invariants of the Novikov complex and the underlying
manifold.

The last chapter of the book contains a survey of some further develop-
ments in the circle-valued Morse theory. The exposition here is more rapid
and we do not aim at a systematic treatment of the subject. I have chosen
several topics which are close to my recent research: the Witten framework
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for the Morse theory, the theory of fibrations of manifolds over a circle and
the circle-valued Morse theory for knots and links.

Brief historical comments can be found in the concluding sections of
Parts 2, 3 and 4, and some more remarks are scattered through the text.
However I did not aim to present a complete historical overview of the
subject, and I apologize for possible oversights.

The book is accessible for 1st year graduate students specializing in
geometry and topology. Knowledge of the first chapters of the textbooks
of M. Hirsch [61] and A. Dold [29] is sufficient for understanding most
of the book. When we need more material, a brief introduction to the
corresponding theory is included. This is the case for the Hadamard-Perron
theorem (Chapter 4) and the theory of Whitehead torsion (Chapter 13).
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Introduction

A C* function f : M — R on a closed manifold M must have at least
two critical points, namely maximum and minimum. This lower bound for
the number of critical points is far from exact: the existence of a function
on M with precisely two critical points implies a strong restriction on the
topology of M. Indeed, let v be the gradient of f with respect to some
Riemannian metric, so that

(v(z),h) = f'(x)(h)
for every x € M and every h € T, M (here ( , ) denotes the scalar product
induced by the Riemannian metric). Assuming that f has only two critical
points: the minimum A and the maximum B, the vector field v has only
two equilibrium points: A and B, and it is not difficult to see that every
non-constant integral curve «y of v has the following property:

lim y(t) = B, lim ~(t) = A.
t—o00 t——o00

Therefore the one-point subset {B} is a deformation retract of the subset
M\ {A}. The deformation retraction is shown in the next figure:

B
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M\ {A} is deformed onto B along the flow lines of v. In particular M\ {A}
is contractible, and it is not difficult to deduce that M is a homological
sphere.

This example suggests that the homology of M can provide efficient
lower bounds for the number of critical points of a C*° function on a man-
ifold. Such estimates were established by M. Morse in his seminal paper
[98]. Here is an outline of his discovery. Recall that a critical point p of a
function f is called non-degenerate if the matrix of the second order partial
derivatives of f at p is non-degenerate. The number of the negative eigen-
values of this matrix is called the index of p. We shall consider only C*°
functions whose critical points are all non-degenerate (Morse functions).
Let f: M — R be such a function. Put

M,={xe M| f(z) < a}.

M. Morse shows that if an interval [a,b] contains no critical values of f,
then M, has the same homotopy type as M,. If f _1([a,b]) contains one
critical point of f of index k, then M, has the homotopy type of M, with
one k-cell attached. The classical example below illustrates this principle.
Here M is the 2-dimensional torus T? embedded in R3, and f is the height
function.

$a
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The homotopy type of M, is clearly the homotopy type of M, with a one-
dimensional cell e; attached:

@@@

a b MU61

Returning to the general case, it is not difficult to deduce that the
manifold M has the homotopy type of a CW complex with the number of
k-cells equal to the number mg(f) of critical points of f of index k. This
leads to the Morse inequalities:

my(f) = b (M) + qu(M) + qp—1(M)

where by (M) is the rank of Hi(M) and qx(M) is the torsion number of
Hy (M), that is, the minimal possible number of generators of the torsion
subgroup of Hy(M). (This version of the Morse inequalities is due to E.
Pitcher [125]; it is slightly different from Morse’s original version.) The
applications of these results are too numerous to cite here; we will mention
only the classical theorem of M. Morse on the infinite number of geodesics
joining two points of a sphere S™ (endowed with an arbitrary Riemannian
metric) and the computation by R. Bott of the stable homotopy groups of
the unitary groups.

The construction described above can be developed further. Intuitively,
it is possible not only to obtain the number of cells of a CW complex X
homotopy equivalent to M, but also to compute the boundary operators in
the corresponding cellular chain complex. In more precise terms, starting
with a Morse function f : M — R and an f-gradient v, one can construct
a chain complex M, such that My, is the free abelian group generated by
critical points of f of index k and the homology of M, is isomorphic to

The explicit geometric construction of M, is a result of a long devel-
opment of the Morse theory (especially in the works of R. Thom [157],
S. Smale [150] [149], and E. Witten [163]). By definition, M, is the free
abelian group generated by the set Si(f) of all critical points of f of index
k. The boundary operator M;, — Mj_; is defined as follows. Let v be
the Riemannian gradient for f with respect to a Riemannian metric on M.
For two critical points p, g of f with indp = indq + 1, denote by I'(p, ¢;v)
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the set of all flow lines of (—v) from p to ¢. It turns out that under some
natural transversality condition on the gradient flow, this set is finite. The
gradients satisfying this condition are called Kupka-Smale gradients, they
form a dense subset in the space of all gradients of f. One can associate a
sign () = %1 to each flow line vy of (—v) joining p with ¢ (we postpone
all the details to Chapters 4 and 6). Summing up the signs we obtain the
so-called incidence coefficient of p and ¢:

n(p,gv)= Y, &().
v €T(pg; v)
Now we define the boundary operator 0y : My — My_1 as follows:

hp)= >, npgo)
q€SK_1(f)
One can prove that d; o 91 = 0 for every k and the homology of the
resulting complex is isomorphic to H,(M). This chain complex is called
the Morse complex.
Here is a picture which illustrates the 2-torus case, considered above:

There are four critical points: one of index 0 (the minimum), one of index
2 (the maximum), and two critical points of index 1 (saddle points). There
are eight flow lines of (—v) joining the critical points of adjacent indices;
they are shown in the figure by curves with arrows. The Morse complex is
as follows:
0 y/ z? Z~—0

where all boundary operators are equal to 0.

It is natural to consider also the circle-valued Morse functions, that is,
C* functions with values in S! having only non-degenerate critical points.
Identifying the circle with the quotient R/Z we can think of circle-valued




