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Introduction: Optimal Design

A hypothesis that got much attention in the 1990s is that the well-
formedness of syntactic derivations is not always determined by absolute
conditions, but it may be based on a selection of the optimal competitor
out of a set of candidates—a reference set. A restricted version of this was
assumed at the early stages of the minimalist program (Chomsky 1992,
1994), and simultaneously, it has been the central notion developed in
Optimality Theory (OT) (see Prince and Smolensky 1993 and later work
on optimality in syntax, including Grimshaw 1997). The computation of
optimality selection is of a different sort than previously assumed in syn-
tax. Typically, it requires that in computing a given derivation, an alter-
native derivation be constructed, in order to determine whether a given
step in the current derivation (or the full output) is permitted. I will re-
fer to this type of computation as reference-set computation (following
the notation in the early minimalist framework). Naturally, the intro-
duction of this new type of computation ignited a debate on whether
the computational system of natural language (syntax) indeed includes
such computations. In later developments of the minimalist framework
(since Chomsky 1995), it was determined that there is no evidence that
reference-set computation applies in core syntax. To establish that such
computation is required it would be necessary to show that whatever it
derives could not be derived otherwise, with more minimal computations.
In fact, all original syntactic arguments in favor of this computation have
found a simpler explanation in the minimalist framework.

The line of argument I pursue here is that this computation is neverthe-
less available to the computational system, as witnessed in some areas of
the interface. But it is much more restricted than assumed in OT. It
applies only as a “last resort,” when the outputs of core syntax operations
are insufficient for the interface. The instances of reference-set computa-
tion that I examine in subsequent chapters can be viewed as interface
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strategies needed to make up for imperfections in the system. Their oper-
ation is severely restricted, and applying them comes with a processing
cost.

The concept of the interface that underlies this work can be best illus-
trated with a thought experiment from Chomsky 2000—an “evolutionary
fable.” Imagine a primate that by some mystery of genetic development
acquired the full set of the human cognitive abilities, except the language
faculty. We can assume, then, that among other cognitive abilities, he has
a system of concepts similar to that of humans, and a sensorimotor sys-
tem that enables the perceiving and coding of information in sounds. Let
us assume, further, that he has an innate system of logic, an abstract for-
mal system, which contains an inventory of abstract symbols, connectives,
functions, and definitions necessary for inference. What would he be able
to do with these systems? Not much. Based on the rich concept system of
humans, his inference system should in principle allow him to construct
sophisticated theories and communicate them to his fellow primates.
However, the inference system operates on propositions, not on concepts,
so it is unusable for the primate in our thought experiment. Possibly
he could code concepts in sounds, but not the propositions needed for
inference.

Pursuing this thought experiment, the goal of linguistic theory can be
described as reconstructing the system the primate lacks, which consists
of whatever is needed to facilitate the interface of his various cognitive
systems. In other words, the goal is to construct the computational sys-
tem (CS) (syntax in a broad sense) that defines language (L), a state of
the facuity-of-language (FL) organ, which makes this interface possible.
Correctly capturing the interface is the crucial adequacy criterion of any
syntactic theory. This is not to be confused with functional accounts of
language. There is ample evidence by now that it is strictly impossible to
derive the properties of the computational system from any functional
considerations of language use. Systems of inference, use, and communi-
cation are consistent with many possible languages, and they cannot ex-
plain why the particular human language was selected. On the other
hand, it is a crucial fact about human language that it can be used to ar-
gue, communicate, think, and so on. If our formal analysis of the compu-
tational system turns out to be inconsistent with basic facts of language
use—for example, if it can be shown that the representations it generates
are unusable for inference or cannot adjust to varying contexts of use—
this cannot be the correct analysis, since the actual sentences of human
language can be used for such purposes.
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Making the interface possible means that the other cognifive systems
should be able to access the representations generated by the CS, namely,
these representations should be legible to the other systems. Chomsky
defines the “interface levels” as sets of representations legible to other
systems (external to the faculty of language). He outlines two broad exter-
nal systems (each consisting of sets of systems): (1) the sensorimotor,
articulatory-perceptual systems, and (2) the conceptual-intentional (C/I),
or thought systems. But for work on the interface it may be useful to de-
compose further the components of the C/I interface. I assume three (sets
of ) such systems, along with the sensorimotor sound system, as schema-
tized in figure L1.

We may assume that basic information of the concepts system is coded
on the lexical items, which are the building blocks of the CS derivations.
For this purpose, the information must be coded in a form legible to
other systems—for example, as thematic features. The problem of legibil-
ity with the concepts system is somewhat different from the problem with
the other C/I systems. Some of the information of the concepts systems,
like the number of Theta roles of a verb—the verb’s arity—must be legi-
ble to the CS (rather than conversely). Similarly, the thematic properties
of a selected argument may determine its merging order in the derivation
(agents must merge in SpecVP, and so on). Much of the other informa-
tion coded on jexical items is not legible to the CS itself, but it is trans-
ferred through the derivations of the CS to the other C/I systems, and
it should be legible to them. (This is the same intuition that underlies
the concept of interpretable features in the minimalist framework.) The



4 Introduction

inference system is essentially logic and its inventory includes, for exam-
ple, logical relations, functions, abstract predicates, and variables (but no
constants). The outputs of the CS are representations that are legible to
the inference system, which can read them as propositions fit for its com-
putations. The hardest to define given our present state of knowledge are
the context systems that narrow the information transmitted through the
derivation (coded in the relevant representation), and select the informa-
tion that is useful for the context of use. On this view, then, the C/I sys-
tems are the concepts/context/inference systems. Figure 1.1 is, of course,
an abstraction. It may turn out to be necessary to assume that the con-
text, inference, and sound systems may have direct interfaces, rather
than each negotiating only with the CS, as in the figure. (This is related
to Chomsky’s (2000) question of association.) 1 will touch occasionally
on this question, particularly in chapter 3, on focus and stress, but I do
not attempt a comprehensive answer. The specific focus of this book is
the interface of the CS with the inference and the context systems. The in-
terface with the concepts system is the topic of research on the relations
between the lexicon and the computational system. I discuss the concepts
interface in Reinhart 2002.

A central question of linguistic theory, then, is how the interface is
guaranteed, or what makes the CS representations legible to the other
systems. Put more broadly, the question is how structure and use are re-
lated. There is no pretheoretical way to answer this. Suppose we ob-
served, empirically, that a certain derivation D is associated with a set
U of possible uses. In principle, there are several conceivable ways that
this could come about. One is that the properties necessary for U are di-
rectly coded in D, through the computational system, as specific features,
functional projections, operations, or conditions on derivations. In other
instances, it is possible that there is no direct relation between the syn-
tactic properties of D and U. Rather, the set U is determined solely by
independent properties and computations of the external systems, which
apply to legible CS representations and further modify them. Yet another
possibility is that there are some interface strategies associating D and U,
using independent properties of the CS, and of the external systems.

I believe all three solutions to the question of the interface are realized
in various areas of the interface, but the one actually favored in syntactic
practice is the first—that of syntactic coding. Many of the properties
now encoded in the theory of the CS got there in order to guarantee the
correct interface with the external systems of use. Quantified (Q), focus
(F), and referential (R) features are just a few examples. The features
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approach has been found useful in current syntax. The theoretical goal is
that syntactic operations—the computational system—should be driven
only by purely formal and mechanical considerations, and feature check-
ing is a formal procedure of this nature. Nevertheless, it is far less obvious
in advance that the full information necessary for the interface is coded in
the CS in the same way. What it would mean, if true, is that features of
one cognitive system are fully coded in another. It is easy to see why this
is an attractive option. If this is how the human system has developed
genetically, it can be viewed as a perfect system, where full matching of
the various cognitive systems is guaranteed in advance, and no problem
of coordination (or of the interface) can ever arise. Though not impossi-
ble conceptually, more evidence that language is perfect in this sense is
needed than is currently available. We should also bear in mind that if
the properties we encode in the CS (as theoreticians) do not, in fact, be-
long there, we are unlikely to get very far. As we will see, encoding inter-
face properties in the CS has led to an enormous enrichment of the
machinery. In many cases, the result is a highly baroque syntax, which,
nevertheless, fares rather poorly in capturing the interface.

This book covers four areas of the inference/context interface: quanti-
fier scope, focus, anaphora, and (more briefly) scalar implicatures. The
first question in each of the areas is what makes the computational system
legible to the other systems at the interface. In other words, how much of
the information needed for inference and context is coded in the CS, and
how is it coded? Once the CS coding is established, we discover that in
each of these areas there are certain aspects of meaning, or the use of der-
ivations at the interface, that cannot be coded in the CS formal language,
on both conceptual and empirical grounds. This residue, I argue, is gov-
erned by interface strategies that can be viewed as strategies of repair,
adjusting the derivation to the needs on the interface. (Not all interface
strategies are strategies of repair, but those discussed here are.)

The broader context of this analysis is Chomsky’s (2000) hypothesis of
optimal design. The term optimal as used here should not be confused
with its use in Optimality Theory (OT). In OT, optimality is a type of
computation—selecting the optimal competitor out of a reference set.
Here the question is whether the genetic design of language happens to
be optimal.! As we saw with the primate thought experiment, the prob-
lem that language is a solution to is the interface of the different cognitive
systems; to enable this, its representations must be legible to the other
systems, Chomsky’s working hypothesis, viewed as an ideal to guide in-
quiry, is that the solution is optimal: “Language is an optimal solution
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to legibility conditions™ (p. 96). A difficult question, of course, is what
would count as an optimal design. A useful way to think about this may
be to imagine a spectrum between a perfect and a poor solution, and op-
timal systems should be closer to the first alternative than to the second.
As a first approximation, we may take the earlier view of the minimalist
program, which I discuss in chapter 1. The assumption is that in a perfect
system, the bare minimum needed for constructing derivations will be suf-
ficient for the full needs of the interface. We may view deviations from the
perfect system as imperfections—adjustments needed to enable the output
representations to meet interface requirements. The less of these there are,
the more optimal the system design is. Though this is not the full story,
we may note that in the three interface areas under consideration here,
the CS outputs are not sufficient for the interface needs. Some extension
or repair of what the CS allows is therefore needed, so these are areas of
imperfections. I will argue that the repair strategies involve the applica-
tion of an illicit operation, which is only motivated by the fact that the
output representations of the CS are not sufficient for the interface needs.
Applying this operation requires constructing a reference set to check
whether this is indeed necessary—that is, that this is the only way to
meet the interface requirements. If optimal design has some measurable
implications, imperfections should come at some cost.

While capturing the interface is the minimal requirement of the CS,
a factor that cannot be ignored in determining which solutions can be
viewed as optimal is that the actual use of language is also restricted by
questions of “hardware.” There is by now ample evidence that the human
processor operates with limited resources of working memory and other
limitations. So far we have looked only at the C/I interface. A CS that
accommodates this interface would enable thought, but not yet communi-
cation. This also requires accommodating the SM (sensorimotor) inter-
face, which, as formulated in Chomsky 2005, enables the externalization
of language (sound, communication, processing). But the sensorimotor
systems are severely constrained by the hardware available for sound pro-
duction and perception, or more broadly, for the computations required
in parsing sound inputs into linguistic representations. It may be possible
to imagine various good solutions to the problem of the C/I interface,
perhaps even better than the actual CSs, which require so much computa-
tion space that they would not be usable by humans. Suppose, then, that
language is optimally designed to accommodate the C/I interface. The
next question is how good the accommodation is to the SM interface, or
the linking of the optimal design for the C/I interface with the fixed hard-
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ware properties of the SM systems. Of the various hardware questions,
the one relevant to the problems discussed in this book is how a parser
that operates with limited memory resources can access and apply the
definitions of the CS.

With this question in mind, we may turn to the fuller specification
Chomsky (2000, 96) gives to the hypothesis of optimal design. He says:
“Suppose that FL [Faculty of Language] satisfying legibility conditions
in an optimal way satisfies all other empirical conditions too: acquisition,
processing, neurology. ... Then the language organ is a perfect solution to
minimal design specifications. That is, a system that satisfies a very nar-
row subset of empirical conditions in an optimal way—those it must sat-
isfy to be usable at all [i.e., the interface conditions]—turns out to satisfy
all empirical conditions. Whatever is learned about other matters will not
change the conclusions about FL.” Note that what is outlined here is
the (unrealistic) perfect solution (rather than the optimal). In the perfect
solution, the CS is some kind of genetic development that, while opti-
mally enabling the C/I interface, also happens to fit perfectly for actual
use with limited resources (thus satisfying all empirical conditions, not
just the subset needed for the C/[I interface). Sticking to the question of
the parser, along with Chomsky’s reasoning in the paragraph quoted
here, it is easy to see intuitively why this would be the ideal situation.
The farther apart the CS and the parser are, the more questions arise
regarding their coordination. For example, if a change takes place in one
system, how does the other adjust? The question, then, is how close
language design could be to this idealized perfect match. Phillips (1996)
suggests that it is pretty close, arguing that “the parser is the grammar.”

The question of how “transparent™ the parser can be—to what extent
it can directly apply computations of the CS, rather than its own indepen-
dent algorithms—has a long history, with roots in Miller and Chomsky
1963. One interpretation of their proposal became known in research on
processing as the Derivational Theory of Complexity. According to this
theory, there should be a measurably greater processing load depending
on the number and complexity of the operations assumed in syntactic
theory (the theory even made the assumption that a passive sentence
would impose greater processing load than an active sentence). The gen-
eral contention since the mid-1970s was that this hypothesis did not find
empirical support, and it was abandoned. Phillips reexamines this history
in detail, and argues, first, that the empirical findings were not as sweep-
ingly nonsupportive as they were said to be, and, more crucially, that
this specific interpretation of Miller and Chomsky’s hypothesis was not
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necessarily warranted, because it also depends on the question of mea-
surement, or perceptual complexity. It is not obvious that every difference
in processing steps, or number of operations applied, should be measur-
able. Berwick and Weinberg (1984) argued that in a nonserial model of
parsing, it is possible that increased complexity does not increase time
demands.

Phillips’s hypothesis that the parser is the CS adopts the strongest pos-
sible version of a transparent parser, which in Berwick and Weinberg’s
terms is token-to-token transparency between the CS and the parser. On
this view, then, the fit of the parser and the CS is perfect.

But executing this hypothesis in Phillips’s system also requires substan-
tial changes in the CS, to make it usable in linear left-to-right parsing
(changes that Phillips attempts to show are independently motivated by
syntax-internal considerations, but that are nevertheless not consistent
with current views of the CS). It may be realistic to consider the other op-
tion as well—that language is optimally designed, though it is not perfect.
It has been repeatedly argued that in speech perception (processing) the
parser uses specific principles or strategies that find no direct correlate in
computations of the CS. The most famous are strategies resolving local
ambiguity at a processing stage, which does not even arise in syntax, as
in (1).

(1) a. Max knows Lucie well enough.
b. Max knows Lucie will laugh.

In response time or eye-tracking experiments, it was found that there is
more intense processing activity following the occurrence of Lucie in (1b)
than in (1a). This indicates that the parser first attaches Lucie as a com-
plement of the verb in both derivations, but then reanalysis is required in
(1b). Such findings are often taken to suggest that the parser must be a
system independent of the CS (other relevant parsing-specific operations
will be mentioned shortly). But we may still ask how optimal the correla-
tion between the two systems is.

Let us assume that the parser is some algorithmic device that generates
trees. But it can lend itself to any other system for the specifics of the trees
generated—that is, it has no internal information about what counts as a
legitimate tree. This means that as long as the CS definitions and compu-
tations are accessible to parsing algorithms, the parser can construct trees
defined by the CS as legitimate outputs. Though the parser can, in princi-
ple, parse anything that is formally compatible, it has developed to oper-
ate within the hardware of limited human working memory. Hence, there
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are parser-specific strategies of how to minimize the load on working
memory, while still applying the computations dictated by the system it
works with, which in this case is the CS. A parser of this sort can be
viewed as transparent, because apart from adjustments to hardware
needs, it does not apply rules of its own, but borrows them from the
CS—its computations are a function of the CS computations and the in-
put string. (The term fransparent parser has a long history, but I am using
it only as described here.?) In practice, it may turn out that the actual hu-
man parser requires some parser-specific conditions for the processing of
language derivations, but the more transparent the parser is, in this sense,
the more optimal language design is. It means that the minimal design
necessary to capture the interface also contains all the information needed
for the parser; thus, the serious problems of coordinating two indepen-
dent systems are avoided.

Perhaps the reason the idea of a transparent parser was abandoned was
that for years it did not seem possible to define such a parser for the CS.
The crucial problem seemed to be that parsing, unlike the CS derivations,
proceeds from left to right (top to bottom). However, Pritchett’s (1992)
parser, which may not have received the attention it deserves, does solve
this problem. It is a head-driven parser, which means that inputs are
stored until a lexical head (verb) is reached. What distinguishes it from
other head-driven parsers is a parsing condition (specific to language
processing) stating that any step in the parsing derivation must satisfy a
Theta requirement (Pritchett’s Theta attachment). Once a parsing step is
licensed by Theta attachment, other attachments in this parse follow the
CS instructions. When the first verb is encountered, the subject being
stored can be attached, by Theta attachment. The derivation proceeds
bottom up, and at the same parse, VP, IP, and CP are constructed, the
subject moves from SpecVP to SpeclP, and so on. (Let us abstract away
from the question of adjuncts here.) In (1b), repeated in (2a), when Lucie
is encountered, Theta attachment allows only one option—attaching it as
the complement of the verb, just as in (1a). Hence, when this attachment
is found inconsistent with the subsequent input, reanalysis is required.

(2) a. Max knew Lucie would laugh.
b. Max warned Lucie would laugh. (Garden path)

While (2a) is captured by virtually any of the available parsers without
assuming either a head-driven or Theta-based parser, Pritchett’s analysis
focuses on the difference between (2a) and (2b). Both require reanalysis,
but only the second is a garden path. Pritchett draws a crucial distinction



