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PREFACE

This book introduces the developing history of semiconductor spintronics,
basic concepts, and research fruits and prospected future development. It
includes Introduction and 10 chapters. The introduction introduces the
developing history of semiconductor spintronics. Chapter 1 introduces the
properties of magnetic ions in semiconductors, energy-level splitting of
magnetic ions in the crystal field, and energy-level characteristics of the
basic state and low excited states. Chapter 2 introduces the properties of
dilute magnetic semiconductors, giant Zeeman splitting effect, and optical
properties. Chapter 3 introduces ferromagnetic semiconductors, ferromag-
netic interaction theory, and factors influencing the Curie temperature.
Chapter 4 introduces the injection of spin electron, Rashba effect, coher-
ent transport of spin through hetero-interface, experiments and theories
of injection of spin-polarized electrons. Chapter 5 introduces spin relax-
ation, three main mechanisms of spin flip — EY, DP, and BAP mecha-
nisms — and experimental studies of spin relaxation. Chapters 6-10 are
special research topics, introducing some recent research fruits. Chapter 6
introduces the theoretical basis and experimental measurements of Rashba
and Dresselhaus effects. Chapter 7 is on the optical responsibility of spin,
including spin photocurrent induced by optically injected electron spin and
electron spin polarization derived by the electric field, in spin-splitting sys-
tems. Chapter 8 is on the control of spin coherent electrons, including elec-
tron spin coherence, their spatial movement, spin Hall effect, production
of spin current, and spin dynamics in semiconductors. Chapter 9 is about
transport of spin-polarized electrons and magnetic domains, including the
spin transport of two-dimensional electron gas and quantum dot of mag-
netic semiconductors, and magnetic domain transport in magnetic semi-
conductors. Chapter 10 deals with spin property control in semiconductor
quantum dots and wires, including the control of g-factors and Rashba
coefficient by changing the shape and size of dots and wires, N doping,
and applied electric or magnetic fields. This book is suitable for high-level
students in university, postgraduates, and professors and researchers.
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INTRODUCTION

Spintronics studies the use of spin freedom of electrons. It originated from
the giant magnetic resistance (GMR) effect found by Fert and Gruenberg,
respectively, in 1988. This discovery produced highly sensitive magnetic
sensors, used in the read-out head of the magnetic hard disk. Just after
9 years as the GMR was discovered, in November 1997 IBM Co. declared
that they fabricated the commercial read-out head of the magnetic hard
disk. This product accomplished an enterprise of several billions of US
dollars. The spin electronic devices under study include magnetic random
access memory (MRAM), spin field effect transistor (FET), spin-polarized
laser, etc. These devices depend on their ability to control spin in the solids
and they can be used to decrease the power consumption, to overcome the
velocity limit connected with the charge electrons, and in the quantum
information treatment and quantum computation in future.

The study contents include: production, transport, tunneling of spin-
polarized electrons, optical phenomena, lifetime, decoherence mechanism
connected with them, etc. A semiconductor is the best material to study
spintronics, because: (1) the number of carriers in a semiconductor is rel-
atively few, and their behavior can be looked as that of a single particle,
excluding the many-particle effect; (2) the qualities of semiconductor sin-
gle crystals, heterostructures, quantum wells, or quantum dots (QDs) can
be made to be very perfect, so that the lattice defects and impurities can be
decreased to the least degree, and the relaxation of electron spins can be
decreased; (3) semiconductors are “transparent” to most part of the light;
thus, one can inject and detect spin electrons by circularly polarized (CP)
light; (4) the semiconductor device technology is advanced, and it is easier
to make devices, integrate devices, or integrate with other devices. But a
semiconductor has a shortcoming: it is nonmagnetic. Its magnetism has
to dope magnetic ions from outside; while the solubility of the magnetic
ions in the semiconductor is smaller, the concentration of magnetic impu-
rity in semiconductors is generally several percent higher. Therefore, the
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Fig. 0.1. Schematic diagram of (a) spin valve and (b) MTJ proposed on the basis of
the GMR effect (Wolf et al., 2001).

formation of the spin-polarized electron in the semiconductor is a difficult
problem.

0.1. Origin of Spintronics — GMR. Effect Device

In 1988, the GMR effect was discovered in a three-layer thin film structure,
as shown in Fig. 0.1(a). In this structure, the above and underneath layers
are ferromagnetic materials, for example, alloys of Fe, Co, and Ni, and the
middle layer is a nonmagnetic material, for example, Cu. When the mag-
netic moments of above and underneath layers are parallel, the resistance
of the material is smallest; when the magnetic moments are antiparallel,
the resistance is largest. The current can be perpendicular to the interface
(CPP) and also can be parallel to the interface (CIP). This effect exists
at room temperature (RT). When a rather small magnetic field (~100 Oe)
changes the orientation of one ferromagnetic layer, one can observe obvious
variations in the resistivity (~10%).

On the basis of the GMR effect, the spin valve was proposed, as shown
in Fig. 0.1(a). An antiferromagnetic layer is added on the above ferromag-
netic layer. The antiferromagnetic layer makes the magnetic moment of the
above ferromagnetic layer hardly to change the direction in the external
magnetic field, i.e. it plays a “nail-up” role of the magnetic moment. The
underneath ferromagnetic layer is free, and its magnetic moment direction
can be changed in the external small magnetic field. When the magnetic
moments of the above and underneath layers become antiparallel, the resis-
tance generally increases 5-10%.
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Magnetic tunnel junction (MTJ), as shown in Fig. 0.1(b), consists of
above nail-up layer (two ferromagnetic layers, and a thin layer of Ru placed
in between them, form a strong antiferromagnetic coupling), underneath
free ferromagnetic layer, and middle thin insulator layer (generally AloO3).
The insulator layer acts as a potential barrier layer, and the tunneling
current is perpendicular to the interface. When the moments of the above
and underneath ferromagnetic layers change from parallel to antiparallel,
the tunneling resistance changes 20-30%, similar to the spin valve, but
the modulation range is large. Because the tunneling current density is
generally small, the MTJ device has a high resistance.

The application of the spin valve and MTJ device is wide, for exam-
ple, magnetic field sensors, read-out head of the magnetic disk, galvanic
isolators, MRAM, etc. GMR spin valve read-out head is the main part of
the magnetic disk driver; nearly all commercial GMR heads are the spin
valve forms originally proposed by IBM. After improvement, for exam-
ple, using the antiferromagnetic layer as the nail-up layer (as shown in
Fig. 0.1(b)), the increase in the magnetic resistance rises from 5% to today’s
20%. Now the memory density of the hard disk has approached 100 Gbits
per square inch. The stripe width of the sensors approaches 0.1 wm, the
current density becomes very large, and the demand for the sensitivity of
the spin valve becomes more high and high.

MRAM uses the property of the magnetic hysteresis loop to store up
data and uses the magnetic resistance to read out data. When the GMR-
based MTJ and the memory unit of spin valve are integrated into an inte-
grated circuit chip, its function is like a general semiconductor random
access memory. But it has an advantage, the data can be retained with
power off. Compared with the electrically erasable programmable read-only
memory (EEPROM) and the flash memory, the write time of the MRAM
is 1000 times faster; besides, there is no wearout in the write cycling and
low power consumption for writing, while the EEPROM and flash memory
will wear out after one million write circles. The MRAM data access times
are about 1/10,000 that of hard disk drives. MRAM is not yet available
commercially.

0.2. New Materials for Spintronics Applications

The search for material-combining properties of the ferromagnet and the
semiconductor has been a long-standing and elusive goal, due to the large



