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Preface

The application of computer techniques in design practice requires an accurate
mathematical formalization of the problems of designing structures. This is
particularly important in the creation of automated design systems. The rigorous
mathematical formalization of problems in the mechanics of a solid deformable
body, together with the use of general methods of discretization, is the founda-
tion of a successful application of any design theory to the practice of designing
real structures. At the present time, design methods that take account of the
plastic properties of materials do not have these factors to an adequate degree,
and this is a serious drawback to their introduction. Since these methods enable
rus to create more economic structures, it is especially important to overcome
this gap in science.

The aim of this book is to combine methods of constructing mathematical
models for the design of different elastoplastic systems, both in respect of the
design aim and in respect of different actions of external loads. The resulting
mathematical models are reduced to dual pairs of mathematical programming
problems, and as a result, have one and the same form for different methods of
discretization. These models can be harnessed to algorithms for the automated
design of buildings. In this book we devote the main attention to the rigorous
mathematical formalization of problems, rather than to the physical side, which
has been discussed fairly extensively by various authors.

The bibliography, which does not pretend to be an exhaustive coverage of
this question, mentions only those publications that have been used directly
in the study.

The author thanks his former postgraduate student R. P. Karkauskas for his
participation in the development of certain problems in Chapter 5.

A A. varas



Introduction

An important problem of our national economy is to design structures taking
account of the plastic properties of materials. The inclusion of plastic properties
enables one to foresee more correctly the behaviour of a structure at different
stages of a loading, and to produce a more rational design. During the last
decade, a significant step in the design of elastoplastic structures has been the
mathematical formalization of the design problem, which has opened up the
possibility of using computer techniques with the aim of realizing practical
design problems.

The calculation of plastic properties of materials in designing structures
can be carried out in various ways. In this book we consider three basic types of
problems.

The most common problem is to determine the carrying capacity of a struc-
ture, that is, the magnitude of the load under which deformations of the struc-
ture grow indefinitely without an increase in the load. Such problems are usually
called limit equilibrium problems; all the parameters of the structure are assumed
to be known, and the only unknown is the parameter of the load producing
plastic failure. The limit equilibrium problem, which is classical in applied
plasticity theory, apparently arose in connection with the need to compare the
results of theoretical and experimental evaluations of failure loads. This problem
is least of all suitable for direct design practice since it is essentially a purely
verification problem, that is, we require to know all the parameters of a structure
beforehand.

The second type of problem is related to the optimization problems of the
mechanics of a deformable solid body. Here we determine as well as the strain-
deformed state, the parameters of the structure or of the load that correspond to
a specific objective function. In design practice the most widespread and real
problem is to determine the optimal distribution of the limit forces which
characterize the carrying capacity of the separate cross-sections of a given form
of structure. The present investigation is devoted to this problem.

The third type of problem is connected with the analysis of a structure
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undergoing plastic deformations but not reaching complete plastic failure. The
determination of the strain-deformed state at any stage of the loading, or after
the system is unloaded, is very important both for design and for operation. It
should be noted that in a given problem the structure and load parameters
must be known completely.

The behaviour of a structure depends on the form of the action of a load.
We discuss three basic forms of quasistatic loading: monotonically increasing
(simple), cyclic, and movable; they are defined fully in the relevant sections of
the book. Here we only mention that the actual strain-deformed state of a
structure is determined by using the appropriate extremum energy principles
of the mechanics of a perfectly plastic body. The mathematical formalization
of these principles for the separate forms of the loading leads to mathematical
models of the problems, which can be formed for continuum and discrete
systems. In the first case the strain-deformed state is described in function
spaces, and in the second, in finite-dimensional spaces. The mathematical models
in function spaces are more general and serve as a basis for the derivation of
mathematical models for the design of specific structures. Essentially, models in
function spaces are used mainly for a qualitative analysis of general problems,
that is, to determine the general properties of their solutions. For the practical
design of concrete systems it is more suitable to use discrete mathematical
models; these are formed under specific assumptions which on the one hand
influence the accuracy of the results, and on the other clear the way for solving
problems by numerical methods and computer techniques. Therefore, in this
book, we do not present the basic mathematical models for continuum systems
in function spaces, but restrict ourselves to a discrete finite-dimensional system
characterized by generalized forces, deformations, displacements, and a load in
finite-dimensional spaces. We use a vector-matrix notation for these variables
and also for specific relationships; this notation is not only convenient for
computer application, but is intuitive for the formation and the analysis of
mathematical models of problems that are especially related to problems of
mathematical programming, to which all the problems in question reduce. We
mention that the reduced discrete mathematical models are suitable for any
discretization method (finite elements, finite differences, etc.).

In the investigations we use repeatedly the deductions of the duality theory
of mathematical programming, in which a given extremum problem is compared
with the closely related dual problem. A joint consideration of both dual prob-
lems is fruitful for a qualitative investigation of extremum problems, and in
estimating the accuracy of solutions. The situation is that the solution of prob-
lems in force variables and the corresponding description of the unknown quanti-
ties in any discretization method, gives a lower bound for the limit load para-
meter, the theoretical weight, etc., while the solution of problems in the vari-
ables of the deformed state gives the upper bound. For example, in using the
finite element method, one can judge the advisability of applying one or another
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form of elements, and also the form of the coordinate functions. Finally, it
should be noted that the matrix formulation of problems enables us to apply
our results to the design of complicated structures, and for the production of
standard programs for computer design.



CHAPTER 1

A discrete description of elastoplastic
structures

1.1 MAIN ASSUMPTIONS AND NOTATION
In constructing mathematical models we make the following assumptions:

1. The application of all forms of loading refers to a quasistatic type, that is,
dynamical effects are not taken into account in the mathematical models. The
calculation of inertia forces does not change the structure of the models, and is
carried out in the same way as in problems in elasticity theory.

2. The material of a structure is perfectly plastic and isotropic. As is well
known, perfect plasticity is the first approximation to the real behaviour of a
system at the elastic limit, and methods based on it are used, as a rule,when the
exhaustion of the carrying capacity is considered to be the limiting state of a
structure. This idealization of the material may seem fairly crude, but experi-
ments show that even for materials such as reinforced concrete, the use of the
limit equilibrium method in designing a system, not only corresponds to the
concept of a limiting state, but also gives a definite economy in determining the
dimensions of systems in comparison with the method of elastic design.

3. Deformations at plastic failure are small, and so the equations of equilibrium
are formed for undeformed structures, that is, we solve a geometrically linear
problem.

These assumptions are applied in the construction of mathematical models
of a continuum discrete structure. When considering specific systems (frames,
plates, shells), it is usual to take into account the additional assumptions deter-
mined by the technical theory of the design. These are well known, and have no
influence on the structure of the mathematical models.

We define certain basic concepts concerning a discrete model of a structure.

Suppose that an elastoplastic body is partitioned into a finite set of com-
putable elements with indices ¥k = 1, 2, ..., v; the term ‘computable element’
is used in a wide sense: for the finite element technique it is a finite element;
for the method of finite differences it is a nodal point of a grid; for frameworks
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it is simply a rod. Thus, a real system is replaced by a discrete model. In choosing
the generalized forces and kinematic variables that characterize the strain-
deformed state of a discrete model, it is necessary simultaneously to take account
of static and kinematic conditions.

Thus, suppose that the strained state at any point X = (x,, x5, x3) of a
computable element is characterized by an ny -dimensional force vector

Str=(Sf) = (St S5, ..., ST (1.1)
The dual formulation of the problem requires the deformation at the same

point x to be defined by an ny-dimensional vector

Q< =(g/%) = (gt 5% ..., ¢*). (1.2)

"

This is connected with the fact that the scalar product of the above two vectors
must be equal to the dissipation of energy at the same point of a computable
element:

Dkx = (gk*)T Skx, 1.3)

At this stage we specify the number of points being considered in a com-
putable element. Suppose that the number of them for the whole structure is
n, then the vectors

S=(S;)=(S%, S%, ..., SYT, (1.4)
q=(q;)=(q}, ¢ ..., @) (1.5)

uniquely define the strain deformed state of the discrete structure, whose
dissipation energy is the scalar product of these two vectors

Another pair of dual variables consists of the loading and the displacement.
Suppose that the displacements at the point in question of a computable
element are defined by the m; -dimensional vector

ukr = () = (W}, uEx, ass, u’;‘f‘)T. 1.7)
Then the loading at this point must be defined by a vector of the same dimension

Flr = (FF) = (Fk*, F§, ..., Fk)T, (1.8)

mk
For all the computable elements of the structure we have the two m-dimensional
vectors
u= (ul) = (“lr l.l2 ey “v)T’

F=(F)=(F, F2, ..., F9T. (1.9)
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The work done by the external loading for the whole discrete structure is
given by the scalar product of these two vectors

W =uTF. (1.10)

Thus, we have defined the following vectors for a discrete structure: a force
vector S, a deformation vector q, an external loading F, and a displacement
vector u. These symbols refer to actual forces, deformations, and displacements,
that is, those arising in a calculation of the elastoplastic work of a structure at a
specific stage of the loading, If we obtain their values by taking into account only
the elastic state of a structure, then we attach a subscript ‘e’ to the corresponding
vectors: (S,, q., u.). If we take into account the residual forces, deformations,
or displacements, then the appropriate letter carries a subscript 7’: (S,, q,, u,).

As is well known, in plasticity theory, the concepts of actual deformations
and displacements are connected with their rates of change, that is, with their
increments in unit time; we denote these by a dot over the appropriate letter

(q,u).

1.2 MAIN RELATIONSHIPS

We turn to the formation of the main relationships entering into the mathe-
matical modelling of problems.

If the pairs of dual vectors S and q or F and u are chosen as indicated
above, then the equilibrium equations of a discrete structure have the form

[4]S=F, (1.11)

where [A] is the algebraic operator of the equilibrium equations for the whole
discrete structure, and can be derived by using a suitable discretization method.
It should be noted that the operator [4] is obtained on the basis of the differ-
ential operator of the equilibrium equations for an elementary volume of the
corresponding continuum structure; for a framework it is formed directly by
using the algebraic equilibrium equations.

The geometric equations, which define the connection between displace-
ments and deformations, can be obtained purely formally since the operators
of the equilibrium equations and of kinematic compatibility are adjoints. Thus
we have

(AT u=q, (1.12)

where [A]T is the transpose of the operator of the equations of equilibrium. The
dimensions of the vectors u and F give the number of possible displacements
of the whole structure, and consequently, to each equilibrium equation must
correspond a kinematic variable u;, and to each geometric equation a dynamic
variable ;.
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As is known, the equilibrium equations and geometric equations do not
depend on the properties of the material, and have one and the same form for
any state, including for residual forces, deformations, and displacements. The
only difference is that by the physical concept of residual forces, they are self-
balanced, and the right-hand side of the equilibrium equations is the zero vector,
that is,

[4]S,=0. (1.13)

The geometric equations for residual deformations and displacements are un-
changed. ‘

We define the physical relationships for a discrete model.

The behaviour of the material of a body in a complicated strained state is
described by a yield function whose argument consists of the forces. Suppose
that for a point x of a computable element & this function is a scalar function
and convex from below. Then, for any point of a computable element, the
yield conditions have the form

S** (8" < 56, (1.14)

where S¥ which is the limit force on the kth element, is a function of the
yield limit og of the material and of a characteristic dimension of the element
itself, for example, the thickness of a plate or a shell. Conditions of the type
(1.14) can be written out for every point being considered in a discrete structure,
or for every computable element. Without loss of generality, we may assume
that the yield conditions for the whole discrete structure are described by a
vector function

f=(f), =1, 2, ..., r.
Then the yield conditions for a structure have the form
f(S)<S,, (1.15)

where S, is the vector of length ¢ of the limit forces. The multiplying proportion-
ality vector has the same dimension:

A=(\).

Thus, the dissipation of energy has the form (with accuracy up to a constant
multiplier):
D=ATS,. (1.16)

By applying the rule of plastic flow, we obtain a connection between the
force vector and the velocity vector of the deformation

a=[ 2] =17 ®N, (117
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where [f(S)] is the n X r-matrix of the gradients of the yield vector-function,
and is given by

[f'(sns[f"ﬂ]z[g_;], J=1, 2, o omI=1,2, ..., t. (118)

The expressions we have obtained enable us to write down the following
relationships of flow theory, valid up to a constant multiplier:

QTS=AT[/(S)ITS=AT{(S)=ATS,. (1.19)

Since Sq and the multiplier A, which performs the role of a scale, are posi-
tive, the expressions (1.16) and (1.19) show that the rate of dissipation of
energy is essentially positive.

Finally, it should be noted that in contrast to problems in elasticity theory,
in the solutions of plasticity problems there can be discontinuities of the forces
and rates of deformation between computable elements. In this case, we must
add to the expressions for the rate of dissipation of energy and the magnitude
of the loading, the dissipation and magnitude at places of discontinuity.

SUMMARY OF CHAPTER 1

We consider a discrete elastoplastic structure. The stress-strain field of the struc-
ture is defined by the force vector S, the vector of generlaized strains q, and the
vector of generalized displacements u. The structure is subjected to an external
loading defined by the vector F. The main relationships are presented in the
form of the equilibrium equations (1.11), the geometric equations (1.12), the
yield conditions (1.15), and the physical law (1.17). A continuum system may
be reduced to these relationships by any conventional discretization method,
for example, by the finite element technique, by the method of finite differ-
ences, etc.



CHAPTER 2

Mathematical models of limit equilibrium
problems

In a given problem we shall assume that all the parameters of a structure are
completely known, that is, we know its configuration, dimensions, and also the
limit force vector S,. We need to determine the limit load parameter and the
strain-deformed state in the plastic failure phase of the structure. Mathematical
models of this problem depend mainly on the form of the loading which deter-
mines the failure; we consider three forms of loading: monotonically increasing,
cyclic, and movable.

2.1 MONOTONICALLY INCREASING LOADING

A monotonically increasing loading is a system of forces, each of which, being
proportional to a parameter, increases from zero to a specific value. In the litera-
ture this form of loading is also called simple or proportional loading. Plastic
failure of a structure under a monotonically increasing loading results from an
accumulation of plastic deformations that leads to their unconstrained growth
under a constant load. This form of exhaustion of the carrying capacity is
usually called simple plastic failure, and the load corresponding to this phase of
the work of the structure is known as the limit load. Since we assume that the
distribution of the load is known, the problem consists in determining the limit
load parameter and the strain-deformed state at the instant the carrying capacity
is exhausted. At this instant the strained state of the structure is characterized
by the forces, and the deformed state by the deformation velocities and displace-
ment velocities. The latter can be explained as follows. Suppose that the plastic
failure stage of a structure has been reached, and that under a small increase in
the load its deformations and displacements grow unrestrictedly. It is impossible
to judge their absolute value at a given instant, but their characteristics can be
taken to be increments in plastic deformation and displacement in unit time.
Thus, in solving the limit equilibrium problem for the case of a monotonically
increasing loading, the required quantities are the forces and velocities of defor-
mation and displacement together with the limit load parameter. We find these



