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Preface

Although the discovery of the platinum complex that we now know to be the first w-alkene
complex, K[PtCl3(C,H4)], by Zeise in 1827 preceded Frankland’s discovery (1849) of diethylzinc,
it was the latter that initiated the rapidly developing interest during the latter half of the nineteenth
century in compounds with organic groups bound to the elements. This era may be considered
to have reached its apex in the discovery by Grignard of the magnesium reagents which occupy
a special place because of their ease of synthesis and reactivity. With the exception of trimethyl-
platinum chloride discovered by Pope, Peachy and Gibson in 1907 by use of the Grignard reagent,
attempts to make stable transition metal alkyls and aryls corresponding to those of main group
clements met with little success, although it is worth recalling that even in 1919 Hein and his
co-workers were describing the ‘polyphenylchromium’ compounds now known to be arene com-
plexes. .

The other major area of organometallic compounds, namely metal compounds of carbon
monoxide, originated in the work starting in 1868 of Schiitzenberger and later of Mond and his
co-workers and was subsequently developed especially by Hieber and his students. During the
first half of this century, aided by the use of magnesium and, later, lithium reagents the devel-
opment of main group organo chemistry was quite rapid, while from about 1920 metal carbonyl
chemistry and catalytic reactions of carbon monoxide began to assume importance.

In 1937 Krause and von Grosse published their classic book ‘Die Chemie der Metallorganischen
Verbindungen’. Almost 1000 pages in length, it listed scores of compounds, mostly involving metals
of the main groups of the periodic table. Compounds of the transition elements could be dismissed
in 40 pages. Indeed, even in 1956 the stimulating 197-page monograph ‘Organometallic Com-
pounds’ by Coates adequately reviewed organo transition metal complexes within 27 pages.

Although exceedingly important industrial processes in which transition metals were used for
catalysis of organic reactions were developed in the 1930s, mainly in Germany by Reppe, Koch,
Roelen, Fischer and Tropsch and others, the most dramatic growth in our knowledge of organo-
metallic chemistry, particularly of transition metals, has stemmed from discoveries made in the
middle years of this century. The introduction in the same period of physical methods of structure
determination (infrared, nuclear magnetic resonance, and especially single-crystal X-ray dif-
fraction) as routine techniques to be used by preparative chemists allowed increasingly sophisti-
cated exploitation of discoveries. Following the recognition of the structure of ferrocene, other
major advances quickly followed, including the isolation of a host of related w-complexes, the
synthesis of a plethora of organometallic compounds containing metal-metal bonds, the char-
acterization of low-valent metal species in which hydrocarbons are the only ligands, and the
recognition from dynamic NMR spectra that ligand site exchange and tautomerism were common
features in organometallic and metal carbonyl chemistry. The discovery of alkene polymerization
using aluminium alkyl-titanium chloride systems by Ziegler and Natta and of the Wacker pal-
ladium-copper catalysed ethylene oxidation led to enormous developments in these areas.

In the last two decades, organometallic chemistry has grown more rapidly in scope than have
the classical divisions of chemistry, leading to publications in journals of all national chemical
societies, the appearance of primary journals specifically concerned with the topic, and the growth
of annual review volumes designed to assist researchers to keep abreast of accelerating develop-
ments.

Organometallic chemistry has become a mature area of science which will obviously continue
to grow. We believe that this is an appropriate time to produce a comprehensive review of the
subject, treating organo derivatives in the widest sense of both main group and transition clements.
Although advances in transition metal chemistry have appeared to dominate progress in recent
years, spectacular progress has, nevertheless, also been made in our knowledge of organo com-
pounds of main group clements such as aluminium, boron, lithium and silicon.

In these Volumes we have assembled a compendium of knowledge covering contemporary or-
ganometallic and carbon monoxide chemistry. In addition to reviewing the chemistry of the cle-

vil



viii Preface

ments individually, two Volumes survey the use of organometallic species in organic synthesis
and in catalysis, especially of industrial utility. Within the other Volumes are sections devoted
to such diverse topics as the nature of carbon-metal bonds, the dynamic behaviour of organo-
metallic compounds in solution, heteronuclear metal-metal bonded compounds, and the impact
of organometallic compounds on the environment. The Volumes provide a unique record, especially
of the intensive studies conducted during the past 25 years. The last Volume of indexes of various
kinds will assist readers seeking information on the properties and synthesis of compounds and
on earlier reviews.

As Editors, we are deeply indebted to all those who have given their time and effort to this
project. Our Contributors are among the most active research workers in those areas of the subject
that they have reviewed and they have well justified international reputations for their scholarship.
We thank them sincerely for their cooperation.

Finally, we believe that ‘Comprehensive Organometallic Chemistry’, as well as providing a
lasting source of information, will provide the stimulus for many new discoveries since we do not
believe it possible to read any of the articles without generating ideas for further research.

E. W. ABEL F.G. A. STONE
Exeter Bristol

G. WILKINSON
London
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2 Bonding of Unsaturated Organic Molecules to Transition Metals

19.1 INTRODUCTION

The rapid development of organometallic chemistry following the discovery of ferrocene in
the early 1950s resulted in the isolation of a wide variety of compounds with unusual and at times
bewildering bonding modes between transition metals and organic molecules or fragments. The
complexity of the structures revealed by an ever increasing number of crystal structure determi-
nations led organometallic chemists to adopt a Baconian approach to the scientific development
of the subject,! whereby they were content to classify the new compounds in an empirical fashion
and relied on only the most rudimentary of bonding concepts, such as the 18-electron rule and
Pauling’s electroneutrality principle and synergic bonding model, as the basis of a conceptual
framework.2

In 1956 Longuet-Higgins and Orgel® demonstrated the potential of the molecular orbital method
as a predictive tool in organometallic chemistry by suggesting the existence of cyclobutadiene
complexes two years before they were actually isolated by Criegee and Hubel.45 At that time
high speed computers were not generally available and this type of molecular orbital analysis
depended heavily on symmetry arguments. Consequently, some erroneous conclusions were also
arrived at by this method of analysis.® During the last ten years the general availability of high
speed computers has led to a renaissance in theoretical organometallic chemistry, and molecular
orbital calculations have been reported at various levels of sophistication. Interestingly, the ap-
proach which has had most impact on the experimental chemist during this period has not been
the very sophisticated ab initio calculations, but the approximate semi-empirical molecular orbital
calculations based on the extended Hiickel method.” In particular, the fragment approach to the
bonding in organometallic compounds developed so widely by Hoffmann and his coworkers® during
the last five years has provided a conceptual framework for the experimental chemist which enables
him to develop approximate bonding models without having to resort to extensive computing.
This chapter illustrates the application of this methodology, which utilises perturbation theory
and symmetry arguments extensively,'? to a wide range of structural and reactivity problems in
organometallic chemistry. However, it is recognised that this approach is an approximate one
and therefore wherever possible results from more sophisticated computational techniques have
been used to check the validity of the conclusions.

19.2. CARBONYL COMPOUNDS
19.2.1 Bonding in Metal Carbonyl Complexes

An understanding of the interactions between carbon monoxide and transition metals is essential
to an understanding of the structures and properties of carbonyl complexes and their substituted
derivatives. Molecular orbital analyses of the bonding in transition metal complexes have generally
been based on two approaches. The approach which is most widely used and simplest to appreciate
is based on elementary symmetry and perturbation theory ideas. The second approach which has
resulted from the widespread availability of high speed computers is based on the rigorous and
quantitative derivation of molecular orbital energies and related observable physical quantities.
The high symmetries of carbonyl complexes such as Cr(CO)g, Ni(CO)4 and Fe(CO)s together
with the wealth of photoelectron, vibrational and NMR data which has been accumulated for
these complexes have made them an ideal testing ground for the development of sophisticated
molecular orbital (and indeed also valence bond) calculations.!!-18 Unfortunately, unlike the
situation which pertains to X-ray crystallographic structural analyses, there is no independently
based reliability index to judge the reliability of a particular calculation. The tendency of authors
to emphasise the merits of their particular mode of calculation makes it difficult for the less spe-
cialised reader to make an independent judgement of their validity.

In this section the basic features of the perturbation model of carbonyl bonding will be outlined,
and then the more sophisticated calculations will be used to judge its overall reliability. In this
context, it is instructive to examine in a little detail the molecular orbitals of the isolated carbon
monoxide molecule. Figure 1 illustrates the molecular orbitals of CO.! The HOMO is 5¢ and
the LUMOs are the degenerate set 27*. The greater electronegativity of oxygen compared to
carbon results in a greater localization of the molecular orbitals 40 and 17 on the oxygen atom
and 50 and 27* on the carbon atom. Also indicated in Figure 1 are the approximate energies of
the metal d-orbitals of the first row transition elements. The precise energies of the metal d-orbitals
in a particular complex will depend on the charge on the metal atom, but since the metal charge
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is likely to lie between 0 and +1, a band can be plotted to indicate the possible d-orbital energy
range.2 A recognition of the relative energies of 40 and 5o and their electronic distribution clearly
indicates that the metal-carbon o-bonding interactions will be dominated by donation of electron
density from 5¢ to a suitable empty orbital on the metal as illustrated in (1). The situation is less
clear cut for the CO w-levels since although the overlap between the 27* level and the relevant
metal d-orbital, as indicated in (2), is superior to that betweenlm and the metal d-orbital (see
(3)), the latter is not negligible. In earlier accounts the contribution of (3) was largely ignored
and the M—CO bonding was described in terms of (1) and (2) only.?! The important elements
of metal carbonyl w-bonding are better represented by the interaction diagram of Figure 2. This
is a common three orbital interaction diagram and indeed if the interactions between 17 and 27*
with 3d, were identical then the resultant molecular orbitals would approximate to bonding,
non-bonding and antibonding, and the non-bonding level would be noded at the central carbon
atom as indicated in (4).22 In point of fact the 3d,-27* interaction predominates and the highest
occupied level in a metal carbonyl complex is better represented by the mixing illustrated in (5).
The predominance of the 3d-27* interaction also suggests that there will be a net transfer of
electron density from the metal to the carbonyl ligand. Therefore, the synergic bonding model
as first proposed by Pauling?? for metal carbonyls whereby the carbonyl metal o-donation is
supplemented by back donation to the 27* (CO) level is essentially corroborated. However, in
molecular orbital terms it is also necessary to introduce the suppplementary mixing between 17
and 27* to complete the picture. The essential validity of the three-centre bonding model described
above is illustrated by electron contour plots derived from SCF-X,-MSW calculations on
Cr(CO)¢ by Johnson and Klemperer!? and illustrated in Figure 3. The 1ty level is primarily CO

CEO O O
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Figure 1 Electron density plots of the frontier molecular orbitals of carbon monoxide, adapted from J. B. Johnson
and W. G. Klemperer, J. Am. Chem. Soc., 1977, 99, 7132. Also shown in the figure are the energies of these mo-
lecular orbitals relative to those of the first row transition elements in their zero and singly charged states



4 Bonding of Unsaturated Organic Molecules to Transition Metals

983

(4)
SB58 + 4y~ 9B
3dw + 2x* e
(5)
e
5 2m*
/£
3y — \_Q &H
. S
- S | 77
W

EALRS

Figure 2 A schematic illustration of the three-centre orbital interaction which occurs as a result of the overlap
of the carbon monoxide 17 and 27* molecular orbitals with the d-orbital of a transition metal with 7-pseu-
dosymmetry, 3d,,

17 in character, with a small bonding contribution from 3d,. The 2tpg level is primarily a 3d -
orbital perturbed by a bonding interaction with 27* (CO) and an antibonding interaction with
17 (CO); and 3ty is primarily 270* (CO) in character with an antibonding interaction with 3d,.

In thiocarbonyl and thionitrosyl complexes the lower electronegativity of sulphur compared
to oxygen and the smaller 17-27* energy separation results in an equalization of the 3d,-2m*
and 3d,~1m interactions and consequently a closer similarity to the bonding, non-bonding, anti-
bonding situation described above and illustrated in (4). Lichtenberger and coworkers have
compared CO, CS and NO and NS as ligands using Fenske-Hall molecular orbital calculations
and the reader is referred to refs. 24-27 for a full discussion of the implications of this three-centre
model to the interpretation of UV photoelectron, IR and electron impact studies on complexes
of these ligands.

There has been some controversy in the literature recently concerning the relative importance
of the g-donation and 7-back donation components of the synergic bonding model. Part of this
controversy originates from an absence of unambiguous techniques for allocating in a precise
fashion the charge associated with metal and carbonyl within the complex and the precise degree
of build-up of electron density in the internuclear regions.!%28-3 Johnson and Klemperer!? have
estimated on the basis of X,~SCF-MSW calculations that in Cr(CO) the o-donation represents
approximately 80% of the bonding contribution compared with 20% for w-back donation. These



Bonding of Unsaturated Organic Molecules to Transition Metals 5

1t

Figure 3 Electron density contour plots of the Seg, 115, 2t2g and 3tz molecular orbitals in Cr(CO)s derived from
SCF-X,~MSW molecular orbital calculations (reproduced with permission from J. B. Johnson and W. G.
Klemperer, J. Am. Chem. Soc., 1977, 99, 7132). The Ita,, 2t and 3ty molecular orbitals can be related to the
three molecular orbitals illustrated schematically in Figure 2. The 5e, molecular orbital corresponds to the lowest
unoccupied set of molecular orbitals in Cr(CO)s

estimates were based on charge density comparisons in (CO)g and Cr(CO)e and must be treated
with some caution in view of changes in atomic sphere sizes in the independent calculations on
the (CO)g and Cr(CO)g entities. Although the strength of bonding represented by these compo-
nents differs by a large amount, Johnson and Klemperer!® have suggested that the weaker -in-
teraction is able to charge compensate for the strong o-interaction since Cr d, to CO 27* bonding
leads to far more charge transfer than CO 5o to Cr d, bonding of an equivalent magnitude.
Sherwood and Hall’s2® Fenske-Hall parameter free molecular orbital calculation on Cr(CO)s
suggests that the bonding contributions are more equally balanced — 55% for o-donation and
45% for w-back donation. They suggest that their results are in general agreement with the low
temperature X-ray and neutron diffraction study of Rees and Mitschler.3! Electron population
analyses showed 1.52 electrons in the So-orbitals and 0.51 in the 27*-orbitals of each carbonyl
while the experimental values are 1.65 and 0.38, respectively. The gross atomic charge on Cr was
0.306 compared to the experimental value of 0.15 & 0.12.3!

Bursten, Freier and Fenske’s3° results using the projected X,, (PX,) technique also indicate
that the estimates of Johnson and Klemperer undervalue the importance of the back donation
component. The PX, technique has permitted the authors to avoid the ambiguities inherent in
the interpretation of X,~SW charge distributions by not relying on the contour plot technique
utilized by Johnson and Klemperer.'® Their calculations suggest that 1.42 electrons are donated
and 1.25 electrons back donated in Cr(CO)s. Therefore, in summary there appears to be a con-
sensus of opinion that metal-carbonyl bonding leads to electroneutrality as originally proposed
by Pauling?3 although the relative strengths of o-bonding and mw-bonding components remain
a matter of some debate. A delineation of these relative contributions is of course experimentally
very demanding if not impossible.

19.2.2 UV Photoelectron Spectral Studies of Metal Carbonyls

The UV photoelectron3233 spectra of metal carbonyls and related species have been extensively
investigated during the last few years. There is general agreement concerning the important
spectral features and especially those associated with ionizations from molecular orbitals localized
predominantly on the metal. However, there has been a considerable debate concerning the as-
signment of the lower lying carbonyl based orbitals. These compounds have proved to be an im-
portant testing ground for the more sophisticated theoretical calculations''-!7 and for evaluating



