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PREFACE

Material Covered

This book presents an introduction to linear algebra and to some of its signif-
icant applications. It is designed for a course at the freshman or sophomore
level. There is more than enough material for a semester or quarter course.
By omitting certain sections, it is possible in a one-semester or quarter course
to cover the essentials of linear algebra (including eigenvalues and eigenvec-
tors), to show how the computer is used, and to explore some applications of
linear algebra. The level and pace of the course can be readily changed by
varying the amount of time spent on the theoretical material and on the ap-
plications. Calculus is not a prerequisite; examples and exercises using very
basic calculus are included and these are labeled “Calculus Required.”

The emphasis is on the computational and geometrical aspects of the sub-
ject, keeping the abstraction down to a minimum. Thus we sometimes omit
proofs of difficult or less-rewarding theorems, while amply illustrating them
with examples. The proofs that are included are presented at a level appropri-
ate for the student. We have also devoted our attention to the essential areas
of linear algebra; the book does not attempt to cover the subject exhaustively.

What Is New in the Seventh Edition

We have been very pleased by the widespread acceptance of the first six edi-
tions of this book. By now, the reform movement in linear algebra is in full
swing and has resulted in a number of techniques for improving the teach-
ing of linear algebra. The Linear Algebra Curriculum Study Group and
others have made a number of important recommendations for doing this. In
preparing the present edition, we have considered these recommendations as
well as suggestions from faculty and students. Although many changes have
been made in this edition, our objective has remained the same as in the earlier
editions:

to develop a textbook that will help the instructor to teach and
the student to learn the basic ideas of linear algebra and to see
some of its applications.

To achieve this objective, the following features have been developed in this
edition: .
xi
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m New Sections have been added as follows:

e Section 2.5, Introduction to Wavelets, shows in a simplified manner
how the technique of wavelets is used to efficiently transmit large
amounts of data.

e Section 9.3, Dynamical Systems, presents an introduction to the quali-
tative behavior of differential equations.

e Section 10.4, Introduction to Fractals, shows how certain nonlinear
transformations have been successfully applied in such diverse areas
as special effects in film and television, compression of digital images,
meteorology, ecology, biology, and astronomy.

These three sections provide applications of linear algebra to new and exciting
areas of applied mathematics.

m Old Section 6.1, Eigenvalues and Eigenvectors, has been split into two
sections to improve pedagogy.

m More geometric material has been added.

m New exercises at all levels have been added. Some of these are more
open-ended, allowing for exploration and discovery, as well as writing.

m More illustrations have been added.

Exercises

The exercises in this book are grouped into three classes. The first class, Ex-
ercises, contains routine exercises. The second class, Theoretical Exercises,
includes exercises that fill in gaps in some of the proofs and amplify material
in the text. Some of these call for a verbal solution. In this technological age,
itis especially important to be able to write with care and precision; therefore,
exercises of this type should help to sharpen such skills. These exercises can
also be used to raise the level of the course and to challenge the more capa-
ble and interested student. The third class consists of exercises developed by
David R. Hill and are labeled by the prefix ML (for MATLAB). These exer-
cises are designed to be solved by an appropriate computer software package.

Answers to all odd-numbered numerical and ML exercises appear in the
back of the book. At the end of Chapter 10, there is a cumulative review of
the introductory linear algebra material presented thus far, consisting of 75
true-false questions (with answers in the back of the book). The Instructors
Solutions Manual, containing answers to all even-numbered exercises and
solutions to all theoretical exercises is available (to instructors only) at no cost
from the publisher.

Presentation

We have learned from experience that at the sophomore level, abstract ideas
must be introduced quite gradually and must be supported by firm foundations.
Thus we begin the study of linear algebra with the treatment of matrices as
mere arrays of numbers that arise naturally in the solution of systems of linear
equations—a problem already familiar to the student. Much attention has been
devoted from one edition to the next to refine and improve the pedagogical
aspects of the exposition. The abstract ideas are carefully balanced by the
considerable emphasis on the geometrical and computational foundations of
the subject.

Material Covered

Chapter 1 deals with matrices and their properties. Methods of solving sys-
tems of linear equations are discussed in this chapter. Chapter 2 (optional) dis-
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cusses applications of linear equations and matrices to the areas of graph the-
ory, electrical circuits, Markov chains, linear economic models, and wavelets.
Section 2.3, Markov Chains, is new to this edition. Chapter 3 presents the
basic properties of determinants rather quickly. Chapter 4 deals with vectors
in R". In this chapter we also cover vectors in the plane and give an early
introduction to linear transformations. Chapter 5 (optional) provides an op-
portunity to explore some of the many geometric ideas dealing with vectors
in R? and R? ; we limit our attention to the areas of computer graphics, cross
product in R?, and lines and planes.

In Chapter 6 we come to a more abstract notion, that of a vector space.
The abstraction in this chapter is more easily handled after the work done
with vectors in R". Chapter 7 (optional) presents two applications of real
vector spaces: QR-factorization and least squares. Chapter 8, on eigenvalues
and eigenvectors, the pinnacle of the course, is now presented in three sections
to improve pedagogy. The diagonalization of symmetric matrices is carefully
developed.

Chapter 9 (optional) deals with a number of diverse applications of eigen-
values and eigenvectors. These include the Fibonacci sequence, differential
equations, dynamical systems, quadratic forms, conic sections, and quadric
surfaces. Section 9.3, Dynamical Systems is new to this edition. Chapter 10
covers linear transformations and matrices. Section 10.4 (optional), Introduc-
tion to Fractals, which is new to this edition, deals with an application of a
certain nonlinear transformation. Chapter 11 (optional) discusses linear pro-
gramming, an important application of linear algebra. Section 11.4 presents
the basic ideas of the theory of games. Chapter 12, provides a brief introduc-
tion to MATLAB (which stands for MATRIX LABORATORY), a very useful
software package for linear algebra computation, described below.

Appendix A covers complex numbers and introduces, in a brief but thor-
ough manner, complex numbers and their use in linear algebra. Appendix B
presents two more advanced topics in linear algebra: inner product spaces and
composite and invertible linear transformations.

Applications

Most of the applications are entirely independent; they can be covered either
after completing the entire introductory linear algebra material in the course
or they can be taken up as soon as the material required for a particular appli-
cation has been developed. Brief Previews of most applications are given at
appropriate places in the book to indicate how to provide an immediate appli-
cation of the material just studied. The chart at the end of the Preface giving
the prerequisites for each of the applications and the Brief Previews will be
helpful in deciding which applications to cover and when to cover them.
Some of the sections, in Chapters 2, 5,7, 9, and 11 can also be used as in-
dependent student projects. Classroom experience with the latter approach has
met with favorable student reaction. Thus the instructor can be quite selective
both in the choice of material and in the method of study of these applications.

End of Chapter Material

Every chapter contains a summary of Key Ideas for Review, a set of Supple-
mentary Exercises (answers to all odd-numbered exercises appear in the back
of the book), and a Chapter Test (all answers appear in the back of the book).
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MATLAB Software

Although the ML exercises can be solved using a number of software pack-
ages, in our judgment MATLAB is the most suitable package for this pur-
pose. MATLAB is a versatile and powerful software package whose corner-
stone is its linear algebra capability. MATLAB incorporates professionally-
developed quality computer routines for linear algebra computation. The
code employed by MATLAB is written in the C language and is upgraded as
new versions of MATLAB are released. MATLAB is available from The Math
Works, Inc., 24 Prime Park Way, Natick, MA 01760, (508) 653-1415; e-mail:
info@mathworks.com and is not distributed with this book or the instruc-
tional routines developed for solving the ML exercises. The Student Edition
of MATLAB also includes a version of Maple, thereby providing a symbolic
computational capability.

Chapter 12 of this edition consists of a brief introduction to MATLAB’s
capabilities for solving linear algebra problems. Although programs can
be written within MATLAB to implement many mathematical algorithms, it
should be noted that the reader of this book is not asked to write programs.
The user is merely asked to use MATLAB (or any other comparable soft-
ware package) to solve specific numerical problems. Approximately 18 in-
structional M-files have been developed to be used with the ML exercises
in this book and are available from the following Prentice Hall Website:
www.prenhall.com/kolman. These M-files are designed to transform
many of MATLAB’s capabilities into courseware. This is done by providing
pedagogy that allows the student to interact with MATLAB, thereby letting the
student think through all the steps in the solution of a problem and relegating
MATLAB to act as a powerful calculator to relieve the drudgery of a tedious
computation. Indeed, this is the ideal role for MATLAB (or any other similar
package) in a beginning linear algebra course, for in this course, more than in
many others, the tedium of lengthy computations makes it almost impossible
to solve a modest-size problem. Thus, by introducing pedagogy and reining in
the power of MATLAB, these M-files provide a working partnership between
the student and the computer. Moreover, the introduction to a powerful tool
such as MATLAB early in the student’s college career opens the way for other
software support in higher-level courses, especially in science and engineer-

ing.

Supplements

Student Solutions Manual (0-13-032852-9). Prepared by Dennis Kletzing,
Stetson University, contains solutions to all odd-numbered exercises, both nu-
merical and theoretical. It can be purchased from the publisher.

Instructors Solutions Manual (0-13-032853-7). Contains answers to all
even-numbered exercises and solutions to all theoretical exercises—is avail-
able (to instructors only) at no cost from the publisher.

Optional combination packages. Provide a MATLAB workbook at a reduced
cost when packaged with this book. Any of the following three MATLAB
manuals can be wrapped with this text for a small extra charge:

m Hill/Zitarelli, Linear Algebra Labs with MATLAB, 2/e (0-13-505439-7).

m Leon/Herman/Faukenberry, ATLAST Computer Exercises for Linear Al-
gebra (0-13-270273-8).

m Smith, MATLAB Project Book for Linear Algebra (0-13-521337-1).
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Prerequisites for Applications

Prerequisites for Applications

Section 2.1 Section 1.4

Section 2.2 Section 1.5

Section 2.3 Section 1.5

Section 2.4 Section 1.6

Section 2.5 Section 1.6

Section 5.1 Section 4.1

Section 5.2 Section 4.1 and Chapter 3
Section 5.3 Sections 4.1 and 5.2
Section 7.1 Section 6.8

Section 7.2 Sections 1.5, 1.6,4.2, 6.9
Section 9.1 Section 8.2

Section 9.2 Section 8.2 (Calculus required)
Section 9.3 Section 9.2

Section 9.4 Section 8.3

Section 9.5 Section 9.4

Section 9.6 Section 9.5

Section 10.4 Section 8.2

Sections 11.1-11.3 Section 1.5

Section 11.4 Sections 11.1-11.3

To Users of Previous Editions:

During the 25-year life of the previous six editions of this book, it was pri-
marily used to teach a sophomore level linear algebra course. This course
covered the essentials of linear algebra and used any available extra time to
study selected applications of the subject. In this new edition we have not
changed the structural foundation for teaching the essential linear algebra
material. Thus, this material an be taught in exactly the same manner as
before. The placement of the applications in a more cohesive and pedagog-
ically unified manner together with the newly-added applications and other
material should make it easier to teach a richer and more varied course.
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CHAPTER 1

- | . LINEAR EQUATIONS
© 'l AND MATRICES

SRR

1.1 LINEAR SYSTEMS

A good many problems in the natural and social sciences as well as in en-
gineering and the physical sciences deal with equations relating two sets of
variables. An equation of the type

ax = b,

expressing the variable b in terms of the variable x and the constant a, is
called a linear equation. The word linear is used here because the graph of
the equation above is a straight line. Similarly, the equation

ayx; +ayx; +---+a,x, = b, (1)

expressing b in terms of the variables x|, x5, ..., x, and the known constants
a, as, ..., a,is called a linear equation. In many applications we are given
b and the constants ay, a, . . ., a, and must find numbers xi, xs, ..., x,, called
unknowns, satisfying (1).

A solution to a linear equation (1) is a sequence of n numbers sy, 55, ...,
sn, which has the property that (1) is satisfied when x; = 51, x, = 52, .
X, = §, are substituted in (1).

Thus x; = 2, x, = 3, and x3 = —4 is a solution to the linear equation

<y

6x; — 3x7 + 4x3 = —13,

because
6(2) —33) +4(—4) = —13.

This is not the only solution to the given linear equation, since x| = 3, x = 1,
and x3 = —7 is another solution.

More generally, a system of m linear equations in n unknowns x, x;,
..y Xy, or simply a linear system, is a set of m linear equations each in n
unknowns. A linear system can be conveniently denoted by

anxy + apxy + -+ apx, = b
anxi + apxs + -+ Gxy = by

()

am1X| + am2X2 + -+ AmpXn = bm-
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The two subscripts i and j are used as follows. The first subscript i indi-
cates that we are dealing with the ith equation, while the second subscript j is
associated with the jth variable x;. Thus the ith equation is

ai X1 +apxs + -+ ainx, = b;.

In (2) the a;; are known constants. Given values of by, bs, ..., b,,, we want to
find values of x, xa, ..., x, that will satisfy each equation in (2).

A solution to a linear system (2) is a sequence of n numbers sy, 52, . .., S,,
which has the property that each equation in (2) is satisfied when x; = sy,
Xy =82, ..., X, = S, are substituted in (2).

To find solutions to a linear system, we shall use a technique called the
method of elimination. That is, we eliminate some of the unknowns by
adding a multiple of one equation to another equation. Most readers have
had some experience with this technique in high school algebra courses. Most
likely, the reader has confined his or her earlier work with this method to lin-
ear systems in which m = n, that is, linear systems having as many equations
as unknowns. In this course we shall broaden our outlook by dealing with
systems in which we have m = n, m < n, and m > n. Indeed, there are
numerous applications in which m # n. If we deal with two, three, or four
unknowns, we shall often write them as x, y, z, and w. In this section we use
the method of elimination as it was studied in high school. In Section 1.5 we
shall look at this method in a much more systematic manner.

 EXAMPLE

1

The director of a trust fund has $100,000 to invest. The rules of the trust state
that both a certificate of deposit (CD) and a long-term bond must be used.
The director’s goal is to have the trust yield $7800 on its investments for the
year. The CD chosen returns 5% per annum and the bond 9%. The director
determines the amount x to invest in the CD and the amount y to invest in the
bond as follows:

Since the total investment is $100,000, we must have x + y = 100,000.
Since the desired return is $7800, we obtain the equation 0.05x + 0.09y =
7800. Thus, we have the linear system

x+ y=100,000

3
0.05x + 0.09y =  7800. )

To eliminate x, we add (—0.05) times the first equation to the second, obtain-
ing

0.04y = 2800,

an equation having no x term. We have eliminated the unknown x. Then
solving for y, we have

y = 70,000,

and substituting into the first equation of (3), we obtain
x = 30,000.

To check that x = 30,000, y = 70,000 is a solution to (3), we verify that
these values of x and y satisfy each of the equations in the given linear system.
Thus, the director of the trust should invest $30,000 in the CD and $70,000 in
the long-term bond. |



EXAMPLE 2

EXAMPLE 3

Sec. 1.1 Linear Systems 3

Consider the linear system

x —3y=-7

4
2x —6y= 1. @

Again, we decide to eliminate x. We add (—2) times the first equation to the
second one, obtaining
0=21,

which makes no sense. This means that (4) has no solution. We might have
come to the same conclusion from observing that in (4) the left side of the
second equation is twice the left side of the first equation, but the right side of
the second equation is not twice the right side of the first equation. W

Consider the linear system
x+2y+3z= 6
2x =3y +2z= 14 5)
x4+ y— z=-2.

To eliminate x, we add (—2) times the first equation to the second one and
(—3) times the first equation to the third one, obtaining

—Ty— 4z= 2

6
—5y — 10z = —20. ©)

This is a system of two equations in the unknowns y and z. We multiply the

second equation of (6) by (—1), obtaining
—Ty —4z=2
y+2z=4,

which we write, by interchanging equations, as

y+2z=4

7
—Ty — 47 =2. 7

We now eliminate y in (7) by adding 7 times the first equation to the second
one, to obtain
10z = 30,

or
z =3, (8)

Substituting this value of z into the first equation of (7), we find y = —2.
Substituting these values of y and z into the first equation of (5), we find
x = 1. Tocheck that x = 1, y = —2, z = 3 is a solution to (5), we verify that
these values of x, y, and z satisfy each of the equations in (5). Thus x = 1,
y = —2, z = 3 is a solution to the linear system (5). We might further observe
that our elimination procedure has effectively produced the following linear
system:

x+2y+3z=6
y+2z=4 ©))
Z'=13;



