CIRCUIT ANALYSIS THEORY AND PRACTICE

Allan H. Robbins Wilhelm C.
Miller

CIRCUIT ANALYSIS THEORY AND PRACTICE

Allan H. Robbins

Red River Community College, Manitoba

Wilhelm C. Miller

Red River Community College, Manitoba

Delmar Publishers

I(T)P An International Thomson Publishing Company

Albany • Bonn • Boston • Cincinnati • Detroit • London • Madrid • Melbourne Mexico City • New York • Pacific Grove • Paris • San Francisco • Singapore • Tokyo Toronto • Washington

NOTICE TO THE READER

Publisher does not warrant or guarantee any of the products described herein or perform any independent analysis in connection with any of the product information contained herein. Publisher does not assume, and expressly disclaims, any obligation to obtain and include information other than that provided to it by the manufacturer.

The reader is expressly warned to consider and adopt all safety precautions that might be indicated by the activities herein and to avoid all potential hazards. By following the instructions contained herein, the reader willingly assumes all risks in connection with such instructions.

The publisher makes no representations or warranties of any kind, including but not limited to, the warranties of fitness for particular purpose or merchantability, nor are any such representations implied with respect to the material set forth herein, and the publisher takes no responsibility with respect to such material. The publisher shall not be liable for any special, consequential, or exemplary damages resulting, in whole or in part, from the readers' use of, or reliance upon, this material.

Cover photo courtesy of Mike Gallitelli

Cover Design: Lisa Bower

Delmar Staff

Publisher: Michael A. McDermott Administrative Editor: Wendy Welch Developmental Editor: Mary E. Clyne

COPYRIGHT © 1995 By Delmar Publishers a division of International Thomson Publishing Inc.

The ITP logo is a trademark under license.

Printed in the United States of America

For more information, contact:

Delmar Publishers 3 Columbia Circle, Box 15015 Albany, New York 12212-5015

International Thomson Publishing Europe Berkshire House 168-173 High Holborn London, WC1V 7AA England

Thomas Nelson Australia 102 Dodds Street South Melbourne, 3205 Victoria, Australia

Nelson Canada 1120 Birchmont Road Scarborough, Ontario Canada, M1K 5G4

Senior Project Editor: Christopher Chien Production Manager: Larry Main and Design Coordinator: Lisa Bower

International Thomson Editores Campos Eliseos 385, Piso 7 Col Polanco 11560 Mexico D F Mexico

International Thomson Publishing GmbH Konigswinterer Strasse 418 53227 Bonn Germany

International Thomson Publishing Asia 221 Henderson Road #05-10 Henderson Building Singapore 0315

International Thomson Publishing—Japan Hirakawacho Kyowa Building, 3F 2-2-1 Hirakawacho Chiyoda-ku, Tokyo 102 Japan

All rights reserved. No part of this work covered by the copyright hereon may be reproduced or used in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, and information storage and retrieval systems—without written permission of the publisher.

1 2 3 4 5 6 7 8 9 10 XXX 01 00 99 98 97 96 95

Library of Congress Cataloging-in-Publication Data:

Robbins, Allan.

Circuit analysis: theory and practice / Allan Robbins, Wilhelm Miller.

p. cm.

Includes index.

ISBN 0-8273-5414-2

1. Electric circuit analysis. I. Miller, Wilhelm (Wilhelm C.)

II. Title.

TK454.R56 1994

621.319'2-dc20

94-1022

Preface

his text is written primarily for students in electrical, electronic, and related engineering technology programs who are taking their first course in electric circuit theory. It covers fundamentals of dc and ac circuits, methods of analysis, capacitance, inductance, magnetism, simple transients, and other topics that are usually taught in an introductory circuit analysis course. While aimed primarily at students in two-and three-year technology programs, it may also serve as an introductory text in four-year university programs.

Features of the Book

- Clearly written, easy-to-understand style emphasizes principles and concepts.
- Hundreds of worked-out examples promote student understanding.
- Over 1200 diagrams and photographs illustrate the text. Full-color photographs and full-color diagrams with color-coded symbols and waveforms make visualizing important ideas easier.
- In-Process Learning Checks help identify learning gaps before students move on to new material.
- *Chapter Previews* provide a brief overview to prepare students for what is coming in the chapter.
- *Competency-based objectives* define the knowledge or skill that the student is expected to gain from each chapter.
- *Key terms* at the beginning of each chapter identify new terms to be introduced.

- A wide selection of end-of-chapter problems includes answers to odd-numbered problems.
- Computer-aided circuit analysis using PSpice illustrates how computer techniques may be used to analyze electric circuit problems.
- End-of-chapter problems are keyed to section numbers. Difficult problems are identified by having their number printed in red.
- Boxed articles and icons help locate important ideas.

Required Background

A working knowledge of basic algebra and trigonometry is required. In addition, students should be familiar with some linear algebra. Notably, they should be able to solve second-order linear equations. (However, a review of determinants and the solution of simultaneous equations is included in Appendix B.) Calculus is introduced gradually in later chapters to aid in the development of ideas. (This is in keeping with ABET guidelines, which require the use of some calculus in accredited engineering technology programs. It is expected that the student will be taking a concurrent calculus course.) Optional derivations using calculus are included for those colleges that stress calculus. They are identified by an These derivations may be omitted by those colleges that do not require calculus.

In terms of electrical background, no previous knowledge is assumed other than that gained through everyday exposure. That is, we expect that students will be generally familiar with the terms voltage, current, and power through their association with common electrical and electronic devices. In terms of physics, we expect that students will know the MKS (meter-kilogram-second) metric system and the atomic nature of matter.

Text Organization

The book is divided into five main parts: Foundation dc Concepts, Basic dc Analysis, Capacitance and Inductance, Foundation ac Concepts, and Impedance Networks. Each part begins with an overview that provides a context for the material to come, while individual chapters include previews that set the stage for the chapter itself.

Chapters 1 to 4 are introductory. They cover foundation concepts including voltage, current, resistance, Ohm's law, and power. Chapters 5 to 9 focus on dc analysis. Covered here are Kirchhoff's laws, series and parallel circuits, mesh and nodal analysis, wye and delta transformations, source transformations, superposition, Thévenin's theorem, the maximum power theorem, and so on. Chapters 10 to 14 cover basic concepts of capacitance, magnetism, and inductance as well as the analysis of simple transients in dc circuits. Chapters 15 to 17 cover foundation concepts of ac, ac voltage generation, the basic ideas of frequency, period, phase angle, and so on. Phasors and the impedance concept are introduced and

used to solve simple problems. Lastly, power in ac circuits is investigated. Chapters 18 to 25 then apply these ideas to the analysis of ac circuits. Topics covered include ac equivalents of earlier dc techniques (e.g., mesh and nodal analysis, superposition, Thevénin's theorem, and so on), as well as new ideas such as resonance, filters and Bode plots, three-phase systems, transformers, and the analysis of nonsinusoidal waveforms.

Several appendices round out the book. Appendix A provides a minitutorial on PSpice and the solution of circuit problems by computer. Appendix B reviews determinants and the solution of simultaneous linear equations. Appendix C contains answers to odd-numbered end-of-chapter problems.

The Ancillary Support Package

A comprehensive set of ancillaries support this book.

Instructor's Solution Manual: Contains step-by-step solutions to all end-of-chapter problems.

Test Bank: Contains problems and multiple-choice questions in computerized form.

Student Laboratory Manual: Contains instructions for hands-on laboratory work. Includes a brief theory overview for each lab exercise.

Transparencies and Transparency Masters: Selected diagrams from the book have been reproduced as full-color overhead transparencies; others have been packaged in a form suitable for making overhead transparencies.

Suggestions for Use

The presentation and format are such that an instructor can either follow the sequence as laid out or design his or her own course by selecting topics and omitting others as needed. For example, the two chapters on basic transients (Chapters 11 and 14) can be postponed until later without loss of continuity. The sections on resonance (Chapter 21), filters and Bode plots (Chapter 22), and nonsinusoidal waveforms (Chapter 25) can also be covered in a different order or omitted without serious discontinuity. Topics omitted can then be covered in a later sequence of study as needed.

To The Student

Learning circuit theory should be challenging, interesting, and hopefully, fun. However, it is also hard work as knowledge and skills can only be acquired through practice. We offer a few guidelines.

- As you go through the material, try to gain an appreciation
 of where circuit theory comes from—i.e., the basic
 experimental laws on which it is based. This will help you
 better understand the foundation ideas on which the theory
 is built.
- Learn the terminology and definitions. Important new terms are introduced frequently. Learn what they mean and where they are used.
- **3.** Study each section carefully and be sure you understand the basic ideas and how they are put together. Work your way through the examples with your calculator. Try the practice problems and end-of-chapter problems. (Answers are in Appendices C and D.)
- **4.** When you are ready, test your understanding using the *In-Process Learning Checks* located in each chapter.
- **5.** Finally, when you have mastered the material, move on to the next block. For those concepts with which you are having difficulty, consult your instructor or some other authoritative source.

Calculators for Circuit Analysis

You will need a good scientific calculator. A good calculator will permit you to more easily master the numerical aspect of problem solving and leave you more time to concentrate on circuit theory itself. (Many calculators are difficult/complex to use and thereby make the manipulation of numbers an impediment to learning. This is especially true for ac, where complex number work dominates.) There are some very inexpensive, nonprogrammable calculators on the market that handle complex-number arithmetic almost as easily as real-number arithmetic. Such calculators save an enormous amount of time. If your school permits their use in introductory courses, we strongly recommend that you acquire one.

Getting the Most Out of This Book

Circuit Analysis: Theory and Practice is a learning tool with many in-text learning features that you should find useful. It uses full-color photos and diagrams (many of which incorporate 3-D effects) to illustrate and clarify ideas. Voltages and currents are color-coded, and color is used to highlight definitions, terminology, and so on. Icons are used to help locate features such as In-Process Learning Checks and Practical Notes, while marginal notes are used to define key terms and expand on ideas. Some of these features are illustrated below.

262 Chapter 8 Methods of Analysis

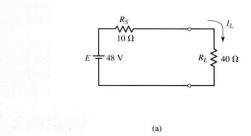
But, when converting the source, we get

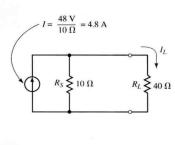
$$I = \frac{E}{R_S}$$

And so

$$I_L = \left(\frac{R_S}{R_S + R_L}\right) \left(\frac{E}{R_S}\right)$$

This result is equivalent to the current obtained in Equation 8–4. The voltage across the resistor is given as


$$\begin{aligned} Y_L &= I_L R_L \\ &= \left(\frac{E}{R_S + R_L}\right) R_L \end{aligned}$$


The voltage across the resistor is precisely the same as the result obtained in Equation 8–3. We therefore conclude that the load current and voltage drop are the same whether the source is a voltage source or an equivalent current source.

Although the sources are equivalent, currents and voltages within the sources may no longer be the same. The sources are only equivalent with respect to elements connected exernal to the terminals.

EXAMPLE 8-4 Convert the voltage source of Figure 8-9(a) into a current source and verify that the current, I_L , through the load is the same for each source.

(b)

Figure 8-9

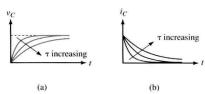


Figure 11-15 The larger the time constant, the longer the capacitor takes to charge.

Figure 11-15 shows how voltage and current are affected by the time constant. The larger the resistance and capacitance, the larger the time constant and hence the longer it takes for the capacitor to charge.

Since resistors and capacitors have tolerances, their actual values may be different from their marked values. This will make the actual time constant of the circuit different than the computed time constant. In many cases, this is not important. However, it may be. In critical applications, you should check the effect that R and C tolerances have on T.

1. If the capacitor of Figure 11–16 is uncharged, what is the current immediately after closing the switch?

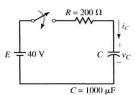


Figure 11-16

- **2.** Given $i_C = 50e^{-20t}$ mA.
 - a. What is τ?
 - b. Compute the current at $t = 0^{+}$ s, 25 ms, 50 ms, 75 ms, 100 ms, and 500 ms and sketch it.
- **3.** Repeat Problem 2 for $v_C = 100(1 e^{-50t})$ V.
- **4.** For Figure 11–16, determine expressions for v_C and i_C .
- 5. Refer to Figure 11-10:
 - a. What are $v_C(0^-)$ and $v_C(0^+)$?
 - b. What are $i_C(0^-)$ and $i_C(0^+)$?
 - c. What are the steady state voltage and current?
- 6. For the circuit of Figure 11-11, the current just after the switch is closed is 2 mA. The transient lasts 40 ms and the capacitor charges to 80 V. Determine E, R, and C.

Acknowledgements

Many people have contributed to the development of this book and we would now like to thank them. First, the reviewers.

- Clay Laster, San Antonio College, Texas,
- Martin Mayer, Red River Community College, Manitoba,
- Lyle McCurdy, Cal Poly Pomona, California,
- Jim Rhodes, Trident Technical College, North Carolina,
- Lee Rosenthal, Fairleigh Dickenson University, New Jersey,
- Richard Sturtevant, Springfield Technical College, Massachusetts.

The following firms and individuals supplied us with photographs, diagrams, or other useful information. To each of you, our sincere thanks.

Allen-Bradley

AT & T

AVX Corporation

B+K Precision

Bourns, Inc.

Butterworth & Co. Ltd.

Carte International Ltd.

Cognex Corporation

Condor DC Power Supplies Inc.

GE Reasearch and

Development Center

Goguen Industries

Harris Corporation—Electronic

Design Automation, Inc.

Harris Corporation-

Farinon Division

Honeywell

Illinois Capacitor Inc.

IBL Professional

John Fluke Mfg. Co. Inc.

Manitoba Hydro

Martin Marietta Mathsoft Inc.

MicroSim Corporation

Motorola

Siemens Solar Industries

Simpson Electric Company

Sprint Tektronix

Transformer Manufacturers Inc.

Vansco Electronics

To the staff at Delmar for their tireless efforts in putting this book together, we express our deep appreciation. To our developmental editor,

XVIII

Mary Clyne, for her encouragement and assistance, to Wendy Welch, our administrative editor, for her advice and valued help, and to Mark Huth, acquisition specialist, for initiating this project—a special thanks to all of you.

Lastly, we thank our wives and families for their support and patience during the preparation of this book.

Allan H. Robbins Wilhelm C. Miller November, 1993

Contents

PREFACE			2.5 2.6	Practical dc Voltage Sources	
PART I Foundation		on dc Concepts1		2.7 PROBLEMS	Switches, Fuses, and Circuit Breakers
 	1	INTRODUCTION2			
	1.1	Introduction4		3	RESISTANCE58
	1.2 1.3	The SI System of Units7 Converting Units10		3.1	Resistance of Conductors
	1.4	Power of Ten Notation11		3.2	Electrical Wire Tables62
	1.5	Prefixes14		3.3	Resistance of Wires—Circular Mils66
	1.6	Significant Digits and Numerical Accuracy15		3.4	Temperature Effects69
	1.7	Circuit Diagrams17		3.5	Types of Resistors72
	1.8	Circuit Analysis Using Computers19		3.6	Color Coding of Resistors78
	PROBLEMS	22		3.7	Measuring Resistance—The Ohmmeter80
	_			3.8	Thermistors83
 	2	VOLTAGE AND CURRENT26		3.9	Photoconductive Cells85
	2.1	Atomic Theory28		3.10	Nonlinear Resistance86
	2.2	Electric Charge32		3.11	Conductance89
	2.3	Voltage33		3.12	Superconductors90
*	2.4	Current36		PROBLEMS	92

	4	OHM'S LAW, POWER, AND ENERGY98		6.9 PROBLEMS	Circuit Analysis Using Computers201
	4.1	Ohm's Law100	-1100-	7	SERIES-PARALLEL CIRCUITS 216
	4.2	Voltage and Current Conventions104		7.1	The Series-Parallel Network218
	4.3	Power109		7.2	Analysis of Series-Parallel Circuits219
	4.4	Power Direction Convention112		7.3	Applications of Series-Parallel Circuits227
	4.5	Energy114		7.4	Potentiometers234
	4.6	Efficiency116		7.5	Loading Effects of Instruments236
	4.7	Nonlinear and Dynamic Resistances119		7.6	Circuit Analysis Using Computers242
	4.8	Computer-Aided Circuit Analysis120		PROBLEMS	247
	PROBLEMS	122			
			-1100-	8	METHODS OF ANALYSIS256
PART II	Basic dc A	Analysis129		8.1	Constant-Current Sources258
	_			8.2	Source Conversions260
	5	SERIES CIRCUITS130		8.3	Current Sources in Parallel and Series264
	5.1	Series Circuits132		8.4	Branch-Current Analysis267
	5.2	Kirchhoff's Voltage Law133		8.5	Mesh (Loop) Analysis271
	5.3	Resistors in Series134		8.6	Nodal Analysis280
	5.4	Voltage Sources in Series138		8.7	Delta-Wye (Pi-Tee) Conversion289
	5.5	Interchanging Series Components138		8.8	Bridge Networks295
	5.6	The Voltage Divider Rule140		8.9	Circuit Analysis Using Computers304
	5.7	Circuit Ground143		PROBLEMS	306
	5.8	Voltage Subscripts144		Q	NETWORK THEOREMS318
	5.9	Internal Resistance of Voltage Sources150			
	5.10	Voltmeter Design151		9.1	Superposition Theorem320
	5.11	Ohmmeter Design157		9.2	Thévenin's Theorem324
	5.12	Ammeter Loading Effects160		9.3	Norton's Theorem333
	5.13	Circuit Analysis Using Computers162		9.4	Maximum Power Transfer Theorem342
	PROBLEMS	163		9.5	Substitution Theorem348
				9.6	Millman's Theorem349
	6	PARALLEL CIRCUITS174		9.7	Reciprocity Theorem352
	6.1	Parallel Circuits176		9.8	Circuit Analysis Using Computers355
	6.2	Kirchhoff's Current Law177		PROBLEMS	359
	6.3	Resistors in Parallel181	PART III	Canacitar	nce and Inductance369
	6.4	Voltage Sources in Parallel188	TARLE III		
	6.5	Current Divider Rule189		10	CAPACITORS AND
	6.6	Analysis of Parallel Circuits194			CAPACITANCE 370
	6.7	Ammeter Design196		10.1	Capacitance372
	6.8	Voltmeter Loading Effects199		10.2	Factors Affecting Capacitance374

	10.3	Electric Fields377	12.15	Measuring Magnetic Fields467
	10.4	Dielectrics380	PROB	BLEMS468
	10.5	Nonideal Effects381		
	10.6	Types of Capacitors382		INDUCTANCE AND
	10.7	Capacitors in Parallel and Series387		INDUCTORS474
	10.8	Capacitor Current and Voltage391	13.1	Electromagnetic Induction476
	10.9	Energy Stored by a Capacitor394	13.2	Induced Voltage and Induction478
	10.10	Capacitor Failures and Troubleshooting395	13.3	Self-Inductance481
	PROBLEMS	396	13.4	Computing Induced Voltage483
			13.5	Inductances in Series and Parallel485
	11	CAPACITIVE TRANSIENTS,	13.6	Practical Considerations486
		PULSE, AND WAVESHAPING402	13.7	Inductance and Steady State dc489
	11.1	Introduction404	. 13.8	Energy Stored by an Inductance491
	11.2	Capacitor Charging Equations408	13.9	Inductor Troubleshooting Hints492
	11.3	Capacitor with an Initial Voltage414	PROI	BLEMS492
	11.4	Capacitor Discharging Equations415	1	4-INDUCTIVE TRANSIENTS498
	11.5	More Complex Circuits416	14.1	Introduction500
	11.6	An RC Timing Application423	14.1	
	11.7	Pulse Response of RC Circuits425	14.2	Current Buildup Transients
	11.8	Transient Analysis Using PSpice429	14.3	Interrupting Current in an Inductive Circuit 507
	PROBLEMS	432	14.4	De-Energizing Transients509
			14.5	More Complex Circuits511
	12	MAGNETISM AND MAGNETIC	14.6	RL Transients Using PSpice516 BLEMS518
11 1000		CIRCUITS440	FNU	DLEIVIO310
	12.1	The Nature of a Magnetic Field442	PART IV Fol	ındation ac Concepts523
	12.2	Electromagnetism444	_	
	12.3	Flux and Flux Density446	— 1155 — 1	S24 AC FUNDAMENTALS
	12.4	Magnetic Circuits447	15.1	Introduction526
	12.5	Air Gaps, Fringing, and Laminated Cores 448	15.2	Generating ac Voltages527
	12.6	Series Elements and Parallel Elements450	15.3	Voltage and Current Conventions for ac531
	12.7	Magnetic Circuits with dc Excitation451	15.4	Frequency, Period, Amplitude, and Peak
	12.8	Magnetic Field Intensity and		Value533
	12.9	Magnetization Curves452 Ampere's Circuital Law454	15.5	Angular and Graphic Relationships for Sine Waves537
	12.10	Series Magnetic Circuits: Given Φ, Find NI 456	15.6	Voltages and Currents as Functions of Time 542
	12.11	Series-Parallel Magnetic Circuits461	15.7	Introduction to Phasors547
	12.12	Series Magnetic Circuits: Given NI, Find Φ 462	15.8	AC Waveforms and Average Value554
	12.13	Force Due to an Electromagnet465	15.9	Effective Values560
	12.14	Properties of Magnetic Materials466	15.1	

	15.11 PROBLEMS	AC Voltage and Current Measurement566	18.5	Divider Rule	658
	FNODLEWS		18.6	Series-Parallel Circuits	
	16	R, L, AND C ELEMENTS AND	18.7	Frequency Effects	664
		THE IMPEDANCE CONCEPT574	18.8	Applications	
	16.1	Complex Number Review576	18.9	Circuit Analysis Using Computers	674
	16.2	Complex Numbers in ac Analysis581	PROBLEMS		676
	16.3	R, L, and C Circuits with Sinusoidal	10		
		Excitation586 -		METHODS OF AC ANALYSIS.	692
	16.4	Resistance and Sinusoidal ac586	19.1	Dependent Sources	694
	16.5	Inductance and Sinusoidal ac587	19.2	Source Conversion	
	16.6	Capacitance and Sinusoidal ac591	19.3	Mesh (Loop) Analysis	700
	16.7	The Impedance Concept595	19.4	Nodal Analysis	706
	16.8 PROBLEMS	Computer Analysis of ac Circuits598	19.5	Delta-to-Wye and Wye-to-Delta Conversions	713
	_	_	19.6	Bridge Networks	717
-1100-	17	POWER IN AC CIRCUITS604	19.7	Circuit Analysis Using Computers	723
	17.1	Instantaneous Power606	PROBLEMS		724
	17.2	Power to a Resistive Load607			
	17.3	Power to an Inductive Load609	-ı - -20	AC NETWORK THEOREMS .	734
	17.4	Power to a Capacitive Load610	20.1	Superposition Theorem—Independent	700
	17.5	Power in More Complex Circuits612	00.0	Sources	/36
	17.6	Apparent Power614	20.2	Superposition Theorem—Dependent Sources	741
	17.7	The Relationship Between P, Q, and S616	20.3	Thevenin's Theorem—Independent	
	17.8	Power Factor618		Sources	744
	17.9	AC Power Measurement622	20.4	Norton's Theorem—Independent Sources	749
	17.10	Effective Resistance	20.5	Thevenin's and Norton's Theorems for Dependent Sources	755
	17.11	Energy Relationships for ac626	20.6	Maximum Power Transfer Theorem	
	PROBLEMS	027	20.7	Circuit Analysis Using Computers	
			PROBLEMS	Oncoun Analysis Osing Computers	
DADT V	I	- Nationalis	THODELMO		770
PART V		e Networks631	—— 21	RESONANCE	782
-1188-	18	AC SERIES-PARALLEL	21.1	Series Resonance	784
		CIRCUITS632	21.2	Quality Factor, Q	786
	18.1	Ohm's Law for ac Circuits634	21.3	Impedance of a Series Resonant Circuit	789
	18.2	AC Series Circuits641	21.4	Power, Bandwidth, and Selectivity of a	707
	18.3	Kirchhoff's Voltage Law and the Voltage Divider Rule649	01 5	Series Resonant Circuit	
	18.4	AC Parallel Circuits653	21.5 21.6	Parallel Resonance	
	10.4	no i alalici oliculta000	21.0	r arallel nesultative	0U4

21.7	Circuit Analysis Using Computers	814	24.3	Reflected Impedance	923
PROBLEMS		817	24.4	Transformer Power Ratings	925
			24.5	Transformer Applications	926
 ⊢ 22	FILTERS AND THE BODE		24.6	Practical Iron-CoreTransformers	933
	PLOT	826	24.7	Transformer Tests	938
22.1	The Decibel	828	24.8	Voltage and Frequency Effects	940
22.2	Multistage Systems	835	24.9	Loosely Coupled Circuits	94
22.3	Simple RC and RL Transfer Functions	837	24.10	Magnetic Coupling in Network Analysis	946
22.4	The Low-Pass Filter	845	24.11	Coupled Impedance	948
22.5	The High-Pass Filter	852	24.12	Circuit Analysis Using Computers	950
22.6	The Band-Pass Filter	857	PROBLEMS		95
22.7	The Band-Reject Filter	860		-	
22.8	Circuit Analysis Using Computers	861	- 25	NONSINUSOIDAL	
PROBLEMS		863		WAVEFORMS	958
			25.1	Fourier Series	960
 ⊢23	THREE-PHASE SYSTEMS	870	25.2	Fourier Series of Common Waveforms	964
23.1	Three-Phase Voltage Generation	872	25.3	Frequency Spectrum	970
23.2	Basic Three-Phase Circuit Connection	ns873	25.4	Circuit Response to a Nonsinusoidal	
23.3	Basic Three-Phase Relationships	876		Waveform	
23.4	Examples	885	25.5	Circuit Analysis Using Computers	
23.5	Power in a Balanced System	890	PROBLEMS		
23.6	Measuring Power in Three-Phase Circ		Appendix A	CIRCUIT ANALYSIS USING PSpice	988
23.7	Unbalanced Systems		Appendix B	SOLUTION OF SIMULTANEOUS LINEAR	00/
23.8	Power System Loads		A	EQUATIONS	990
23.9	PSpice for Three-Phase Circuits		Appendix C	ANSWERS TO IN-PROCESS LEARNING CHECKS AND PRACTICE PROBLEMS	1004
PROBLEMS		903	Appendix D	ANSWERS TO SELECTED ODD-NUMBERE QUESTIONS	ΞD
 ⊢ 2 4	TRANSFORMERS	910	Glossary		107
24.1	Introduction		Index		108
24.2	Iron-Core Transformers: The Ideal Mo				
- 1.4-	non ool mandidinididi mid ladal Mid	4011111010			

Foundation dc Concepts

CHAPTER 1 Introduction

CHAPTER 2 Voltage and Current

CHAPTER 3 Resistance

CHAPTER 4 Ohm's Law, Power,

and Energy

ircuit theory provides the tools and concepts needed to understand and analyze electrical and electronic circuits. The foundations of this theory were laid down well over a hundred years ago by a number of pioneer researchers. In 1780, Alessandro Volta of Italy developed an electric cell (battery) that provided the first source of what we now call dc voltage. Around the same time, the concept of current was evolved (even though nothing was known about the atomic structure of matter until much later). In 1826, Georg Simon Ohm of Germany brought the two ideas together and experimentally determined the relationship between voltage and current in a resistive circuit. This result, known as Ohm's law, set the stage for the development of modern-day circuit theory.

In Part I, we examine the foundation of this theory. We look at voltage, current, power, energy, and the relationships between them. The ideas developed here are used throughout the remainder of the book and in practice.