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TOPICS IN
SEVERAL PARTICLE DYNAMICS



Preface

There has recently been a surge of interest in theoretical questions
concerning the quantum dynamics of a small number of particles, with the
main emphasis on three-body problems. One reason for this may be the
fact that computers are rapidly being developed to the point where we may
begin to hope that reasonably accurate numerical solutions of Schrédin-
ger’s equation for three particles are attainable. In addition, spurred on by
the work of Faddeev, we are beginning to understand how to overcome
some of the tricky mathematical difficulties that are involved. There are
many experimental situations, ranging from electron-hydrogen atom
scattering to three-body resonances in high-energy physics, where a correct
treatment of three- (and more) particle systems is essential to their under-
standing.

In this monograph, we have reviewed several techniques for treating
three-particle systems (and other few-body systems) that have proved
useful. We begin by surveying some mathematical aspects of the type of
integral equations that arise in scattering theory. More details on Fredholm
theory are left to the Appendix. Chapter 2 is concerned with some aspects
of the two-body problem which are useful for the later discussion, while
Chapter 3 treats the more general case of multi-channel two-particle
systems. The question of rearranging the integral equations for scattering
to make them more amenable to standard methods is studied in Chapter 4,
and Chapter 5 deals with the three-body problem for factorable two-body
potentials, where significant simplifications ensue. The integral equations
to be solved have fewer variables if use is made of conservation of angular
momentum, and the details of this analysis are given in Chapter 6, con-
tributed by J. S. R. Chisholm. Finally, in Chapter 7, we describe several
applications of variational principles, quite successful in practice, to
problems of the type we have been discussing.

We hope that this monograph will help the reader with some knowl-
edge of basic scattering theory to make the jump to the current literature
on the subject. We regret that some topics have been omitted (in particular
there is no discussion of relativistic problems), but in exculpation we cite
the limitations of space and time.
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vi Preface

The monograph has grown out of a series of lectures delivered by one
of us (K. M. W.) in December, 1965, at Texas A and M University, and
we thank Professor J. L. Gammel, the University, and the Air Force
Office of Scientific Research for making these possible. We would also
like to thank a ndmber of scientists working in the field for helpful dis-
cussioph,.in npafticu‘fai‘; Professor J. L. Gammel, Professor A. N. Mitra,
and Dr. T Gillespie.
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CHAPTER 1

Integral Equations

1.1. Introduction

Before beginning our discussion of several particle dynamics let us
review what may be called “solved problems” in theoretical physics. The
list is not long. The motion of a particle of known characteristics in a fixed
force field and the non-relativistic motion (but not the relativistic motion)
of two particles interacting via a prescribed potential can be called *‘solved”
in the sense that the trajectories may be calculated with arbitrary precision.
As we shall note in more detail later, Mitra has shown that the quantum
mechanical motion of three non-relativistic particles interacting via
Jactorable potentials can be reduced to a form not more complicated than
that of the two-body problem.

If we relax our requirements for a “solution,” the above short list
can be extended. The celebrated Ursell-Mayer cluster expansion for a
classical gas provides a systematic method (via an infinite series of terms)
for calculating the equation of state over a limited domain of temperatures
and densities. A similar cluster expansion in quantum mechanics for
systems of many particles was suggested by Brueckner! and has been
developed in detail.-3:* The corresponding cluster expansion in quantum
statistical mechanics has been formulated by Bloch and DeDominicis.?
Related treatments of the many-body problem using Green’s functions and

! K. A. Brueckner, The Many-Body Problem (John Wiley & Sons, Inc., New York,
1959). K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023 (1958).

* J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957).

® N. Hugenholtz, Physica 23, 481 (1957).

¢ W. B. Riesenfeld and K. M. Watson, Phys. Rev. 104, 492 (1956).

® C. Bloch and C. DeDominicis, Nucl. Phys. 7, 459 (1958); 10, 181 (1959).
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2 Integral Equations

integral equations have been given by Martin and Schwinger,® Galitskii
and Migdal,” and Weinberg.8® The extension of cluster expansions to
non-equilibrium phenomena has been initiated by Kubo,® Montroll and
Ward," and Prigogine,'* among others.

The cluster expansions referred to above represent (in general) formal,
rather than practical, solutions to the many-body problem. The reason for
this is that the successive approximations involve solutions to the two-body
problem, the three-body problem, the four-body problem, etc. Therefore,
it is only to the extent that the several-body problems can be solved that
practical progress can be made with the many-body problems of statistical
mechanics, and atomic and nuclear physics.

It is with techniques directed toward the solution of several-body
interactions that we shall be primarily concerned here.1?

1.2. Some Integral Equations Occurring in Quantum Mechanics

We consider a physical system which may be described by a Hamil-
tonian H and suppose that H can be decomposed into an “unperturbed
part” K and a “perturbation” V:

H=K+ V. (1.1)

In practice, K is supposed to be so simple that a complete set of its eigen-
functions can be explicitly exhibited. If we let E designate a complex
variable, the Green’s functions for H and K are, respectively,

1 1
G(E) = ; Gy(E) = .
(B)= =0,  GlB)=——

(1.2)

¢ P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959).

7 V. M. Galitskii and A. B. Midgal, Zh. Experim. i Teor. Fiz. 34, 139 (1958)
[English transl. Soviet Phys.—JEPT 7, 96 (1958)].

¢ 8. Weinberg, Phys. Rev. 133, B232 (1964).

? These techniques are reviewed in L. P. Kadanoff and G. Baym, Quantum Statistical
Mechanics (W. A. Benjamin, Inc., New York, 1962).

10 R. Kubo, J. Phys. Soc. Japan 12, 570 (1957).

L E. Montroll and J. Ward, Physica 25, 423 (1959).

* 1. Prigogine, Non-Equilibrium Statistical Mechanics (Interscience Publishers,
Inc., New York, 1962).

13 We might add to our extended list of solved problems that of the scattering of a
particle by a “‘weakly bound” composite system, as discussed, for example, in M. L.
Goldberger and K. M. Watson, Collision Theory (John Wiley & Sons, Inc., New York,
1964).



Integral Equations Occurring in Quantum Mechanics 3

G and G, are related by an integral equation of the Lippmann-Schwinger

form
G(E) = G4(E) + G(E)VG(E)

= Go(E) + G(E)VG(E). (1.3)
The scattering matrix T(E) may be obtained from G by using the equation
G(E) = Go(E) + Go(E)T(E)Go(E). (1.4)
The wave function v describing scattering from an initial state y,, such
that Ky, = E,x,, can also be expressed in terms of G*°:
vy = lim [1 + G(E, + in)V]y, (1.5)
n—0(+)

The most familiar application of the above is to the calculation of the
scattering cross section. For scattering from an initial state y, to a final
state y, we form the matrix element

Tyo = lim gy, T(Eq + 1)) (1.6)

n—=0(+)

and obtain the scattering cross section in the form?!®

4
dotb o) = 3 EL 6@, — PYIE, — E)IT (1)

b Urel
Here the sum on b runs over those final states constituting a measurement
of do, v, is the relative velocity of the (two) colliding particles in state a,

and P, and P, are the respective total momenta in states b and a.

Stationary state perturbation theory may also be developed in terms
of the Green’s function. Let the system under consideration be supposed
confined to a finite volume, then the eigenvalue spectrum of H is discrete
and let Ky, = Ex,, Hy, = E,p,. Now, the poles of (y,, G(E)x,), as a
function of E, give the eigenvalues E;. Using Eqs. (1.3) and (1.4), we can

express E; as*13
E,=E, + (Xas T(E)_)Xa)' (1.8)

4 Equation (1.3) and similar equations may be derived on using the operator
identities

1 1 1
G- =B D5=5EB-D7,

where 4 and B are two operators possessing inverses.

15 The relations (1.1), ..., (1.5) are familiar in scattering theory. See, for example,
Ref. 13 for a discussion of these.

1% See, for example, Ref. 13, p. 92. It is supposed that the é-function expressing
conservation of momentum has been factored out of Eq. (1.6). See also Secs. 2.1 and 4.1.



4 Integral Equations

The partition function of the canonical ensemble may also be obtained
from G. That is, the partition function is

Z = Trf dE e *EG(E), (1.9)
c

with an appropriate choice for the contour C and 8! the temperature.1?-18

1.3. Mathematical Digression

The integral equations (1.3) may be written in the form

G(E) = G(E) + «(E)G(E)

= Gy(E) + G(E)«,(E), (1.10)
where the kernel « is
x(E) = G(E)V
and?®
k(E) = VG(E) = Trx'Tr,
where T is the time reversal operator.2’ For a discussion of the properties
of these equations it is convenient to generalize them. We write

G(E, A) = Go(E) + A(E)G(E, 4), (1.11)

where A is a complex parameter. Clearly for A = 1, G(E, 1) = G(E), the
“physical Green’s function.”” Next we write

G(E, ) = {1 + AF(E, A)}Gy(E) (1.12)
and substitute this into Eq. (1.11) to obtain
F(E, }) = «(E) + A<(E)F(E, 2). (1.13)

Equation (1.13) is called the resolvent equation of k and F(E, 1) the resolvent
kernel. The ““physical’ resolvent kernel F(E) is obtained from this on setting
A = 1. Itis evident from Eqs. (1.12) and (1.4) that if we can obtain F(E, 1),
then we can immediately calculate the physical properties of the system
being studied.

It is beyond our present scope to discuss the mathematical theory of
Eq. (1.13) in any detail. [For a more detailed discussion the reader is

17 By “Tr [...]” we mean ‘“‘trace of the matrix [...].”

18 K. M. Watson, Phys. Rev. 103, 489 (1956).

1% The superscript dagger indicates an adjoint, or Hermitian conjugate, operator.
2¢ The integral equation for the scattering matrix is T(E) = V + «(E)T(E).
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referred to Ref. 21, 22, and 23. An excellent summary has been given by
Weinberg,?* on whose discussion we rely heavily here. A discussion of the
Fredholm method is given in the Appendix.] Instead, we shall largely just
quote those properties having a direct bearing on our later considerations.

The kernel «(E) can be represented as a matrix (6’| x(E) |&), expressed
in terms of a complete set & of variables describing the physical system. If

(E) = Tr [«(E)x'(E)]
=Jl(é"] k(E) |&)|?dé’ dE < oo, (1.14)

k is said to be an #2 kernel (sometimes also called a Schmidt operator).
For #2 kernels a detailed theory of the solutions of Eq. (1.13) is available.?®
A detailed theory is available also for a more general kernel, called a
compact kernel.* To see what this means, we imagine that normalized wave

packet states V' ,(£), « = 1,2, .. ., are formed from some complete set of
wave functions in the Hilbert space of state vectors of the physical system:
¥l = (¥, Y172 =1 (1.15)

The kernel «(E) is compact if for any infinite set of the V', the set
P, = f (€] K(E) |E) P (&) dE'

contains a subset converging to a limit.?® Weinberg?* has summarized use-
ful properties of Eq. (1.13) for compact kernels, some of which we repeat
here:

1. If x is compact, it is bounded in the sense that all |[«'¥",| are less
than some fixed number (we recall the condition that |V, | = 1);

2. If the condition (1.14) is satisfied, « is compact;

3. If it is compact, « can be represented to arbitrary accuracy by a
kernel of finite rank, that is,

D
(&' k16) = 3 1(ENLE), (1.16)
where y; and %, are two sets of states each of finite norm;

21 F. Riesz and B. Sz.-Nagy, Functional Analysis (Frederich Ungar Publishing Co.,
New York, 1955).

22 R. Courant and D. Hilbert, Methods of Mathematical Physics (Interscience
Publishers, Inc., New York, 1962).

2 F, Smithies, Integral Equations (Cambridge University Press, New York, 1958).

* S. Weinberg, Phys. Rev. 130, 776 (1963); 131, 440 (1963).

25 The term completely continuous, rather than compact, is used in Refs. 21 and 24,
This is evidently a generalization of a continuous kernel; that is, a kernel (&| «(E) |6”)
which is a continuous function of its variable sets & and &”.
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4. The resolvent operator F(E, 2) is said to be bounded if |[F¥,| is
finite (in the sense defined by property 1 above) for all of our normalized
wave packet states V.. It is said to be analytic in A if all matrix elements
(¥, FY',) are analytic functions of 4. If Fis bounded in some domain of 1,
it can be shown to be analytic in 1. A point 1 at which F is bounded and
analytic is said to belong to the resolvent set of k. Points A at which Fis not
both bounded and analytic are called the “spectrum” of «.

For a compact (or .#?) kernel the spectrum of « forms a discrete set
A, (0 =1,2,...), with no finite limit point, called the point spectrum.
Corresponding to each 4, there is a normalizable state vector @, such that

D, == zl o, (1.17a)

(4

or, equivalently,
AV, = (E — K)D,. (1.17b)

For any A, = 1, Eq. (1.17b) is the Schrodinger equation for a bound state
and the “physical” resolvent kernel F(E) is singular.

Kernels which are not compact may have in addition to a point spectrum
what is called a “‘continuous spectrum.”2

It is in general not easy to determine if a given kernel « is compact,

but is usually straightforward to determine if it is an %2 kernel [that is,
satisfies (1.14)]. In quantum mechanical theory the relatively simpler
theory? of #2 kernels is ordinarily used when applicable.

1.4. Some Techniques for Solving Integral Equations

By successive substitution of the right-hand side of Eq. (1.13) for F
on the right, we obtain the Born (sometimes called the Neumann) series

FE, 2) =i + M + 123 4+ -+ (1.18)

If « is compact this series converges for || < |4,|, where | 4] is the smallest
of the |4,| obtained from Eq. (1.17). A sufficient condition to establish the
convergence of the series (1.18) is that26:27
[A]*r(E) < 1, (1.19)
where 7(E) is defined by Eq. (1.14).
¢ See, for example, Ref. 23, p. 29.

*” M. Scadron, S. Weinberg, and J. Wright, Phys. Rev. 135, B202 (1964), have
shown that in scattering theory this often provides a practical test for convergence,
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An important formal method for discussing solutions to Eq. (1.13)
for #? kernels is based on the Fredholm theory. To describe this, we choose
an adequate approximation to « of the form (1.16), so Eq. (1.13) reads

(&' F|€) = zx,(éa ){ 16) + 1 f 7(ENE F &) dé").
On defining
I(8) = f 7/(&")&"| F (&) dé",

we may write Eq. (1.13) in the form
(' F|6) = <@@|x|éa>+/12xz(é’)l“(€) (1.20)
Operating from the left with 7 (&) gives

() = z [, 71 (&) + A TAE),

where
e = j dET(E1).
Next, we write
D
(&) = Z F. (&) (1.21)
s=1
to obtain
Fjo=r;+ A z K jiFis (1.22)

This has the form of Eq. (1.13), but with finite matrices. Equation (1.21)
has the solution

N;;
g D K (1.23)
where
D(E, A) = det g, (1.249)
with a;; = 0;; — Ak,;, and
N, = D : (1.25)
da

it

If the solution (1.23) is inserted into Eq. (1.21) and the result into
Eq. (1.20), we obtain F(E, 1). The solution exists when the Fredholm
determinant D(E, A) # 0 and may, in principle, be made to approximate
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as accurately as desired the solution to Eq. (1.13) by choosing a sufficiently
accurate representation (1.16).
A convenient notation for the Fredholm solution to the exact equation

[1 — Ax(E)IF(E, 2) = k(E)
[this is Eq. (1.13)] is

F(E, %) = % «(E), (1.26)

where the Fredholm determinant is28

D(E, ) = det [1 — Ax(E)] (1.27)

and N is an appropriate operator. For = 1, we write Eq. (1.26) simply as
N(E)

F(E) = —= «(E). 1.28

(B)= (E) «(E) (1.28)

When « is £2, N(E) and D(E) are analytic functions of E in any domain in
which « is analytic.

This follows from the facts that each term of the Fredholm series is
analyticin E and the series for N and D are uniformly convergent. Actually,
F(F) is meromorphic for any compact, analytic «(E). It is also interesting
to point out that the residue of F(E) at a pole due to a zero of D(E) is an
operator of finite rank.

As we shall see in Chapter 3, given the Fredholm determinant D(E),
one can construct the physical scattering matrix 7" for scattering involving
only two-particle channels.

Weinberg? has suggested a method combining the Born and Fredholm
treatments, which he calls the quasi-particle method. When the series (1.18)
fails to converge for the “physical’” value A = 1, we have seen that this
results from there being one or more eigenvalues 4, such that |4 | < 1.
Weinberg’s proposal is to modify the kernel in such a way that there are
no A,’s of magnitude less than unity. To do this, he writes [instead of Eq.
(1.16)] for a compact kernel «

&1 x18) = (&) 1, 16) + S 0(E)B(&), (1.29)
=1

28 Equation (1.27) is defined in the usual sense if « has a matrix representation with
discrete indices. When « has continuously variable indices the determinant is often
defined by letting these represent the limit of a set of discrete indices. Equation (A.14)
provides another sometimes useful definition of det [1 — Ax]. The Fredholm formulae
of the Appendix provide yet other ways of defining this quantity. More general definitions
are given, for example, in Chapter VI of Ref. 23.



