VOLUME I: SOL-GEL PROCESSING

ACT

Galdins

TEOS

Gytchinsame

VOLUME EDITOR: HIROMITSU KOZUKA

SOL-GEL SCIENCE AND TECHNOLOGY Processing Characterization and Applications

EDITOR Sumio Sakka

HANDBOOK of SOL-GEL SCIENCE and TECHNOLOGY

Processing, Characterization and Applications

edited by

Sumio Sakka

Professor Emeritus of Kyoto University Hirakata, Osaka, Japan

VOLUME I SOL-GEL PROCESSING

Volume editor:

Hiromitsu Kozuka

Kansai University Suita, Osaka, Japan

KLUWER ACADEMIC PUBLISHERS Boston/Dordrecht/London

Distributors for North, Central and South America:

Kluwer Academic Publishers 101 Philip Drive Assinippi Park Norwell, Massachusetts 02061 USA Telephone (781) 871-6600 Fax (781) 871-6528

Distributors for all other countries:

E-Mail: (kluwer@wkap.com)

Kluwer Academic Publishers Group Post Office Box 322 3300 AH Dordrecht, THE NETHERLANDS Telephone 31 78 6576 000 Fax 31 786 576 474 E-Mail: (services@wkap.nl)

Electronic Services (http://www.wkap.nl)

Library of Congress Cataloging-in-Publication Data

Handbook of sol-gel science and technology: processing, characterization, and applications/edited by Sumio Sakka.

p. cm.

Includes bibliographical references and indexes.

Contents: v. 1. Sol–gel processing / volume editor, Hiromitsu Kozuka – v. 2. Characterization of sol–gel materials and products / volume editor, Rui M. Almeida – v. 3. Applications of sol–gel technology / volume editor, Sumio Sakka.

ISBN 1-4020-7969-9 (set: acid-free paper) – ISBN 1-4020-7966-4 (v. 1: acid-free paper) – ISBN 1-4020-7967-2 v. 2: acid-free paper) – ISBN 1-4020-7968-0 (v. 3: acid-free paper)

1. Ceramic materials. 2. Colloids. I. Sakka, Sumio.

TP810.5.H36 2004 666—dc22

2004054888

© 2005 Kluwer Academic Publishers

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now know or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks and similar terms, even if the are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed in the United States of America.

987654321

SPIN 11052715

springeronline.com

HANDBOOK of SOL-GEL SCIENCE and TECHNOLOGY

Processing, Characterization and Applications

VOLUME I SOL-GEL PROCESSING

Preface to the Handbook (Sol-Gel Science and Technology)

This three-volume Handbook "Sol–Gel Science and Technology" was planned with the purpose of providing those who are interested in processing, characterization and application of materials with comprehensive knowledge on sol–gel science and technology.

Around 1970, three different groups in the field of inorganic materials published research results on preparation of glass and ceramics via solutions or sol–gel route. H. Dislich prepared a pyrex-type borosilicate glass lens by heating a compact of metal alkoxide derived powder at temperatures as low as 650°C. R. Roy prepared a millimeter-size small piece of silica glass via sol–gel route at temperatures around 1000°C. Mazdiyasni et al. showed that well-sintered, dense ferroelectric ceramics can be obtained at temperatures as low as 900°C, when sol–gel powders prepared from solutions of metal alkoxides are employed for sintering.

Those works stimulated people's interest in sol-gel preparation of inorganic materials, such as glasses and ceramics. Materials scientists and engineers paid attention to the possibility of this method in giving shaped materials directly from a solution without passing through the powder processing and the fact that the maximum temperature required for processing is very low compared with conventional technology for preparing glasses and ceramics. Thus, many efforts have been made in preparing bulk bodies, coating films, membranes, fibers and particles, and many commercial products were born.

The significant characteristics unique to the sol-gel method became evident, when organic-inorganic hybrid materials were prepared by H. Schmidt and silica materials containing functional organic molecules were prepared by Avnir in early 1980's. Such materials are produced at low temperatures near room temperature, where no decomposition of organic matter takes place. Low temperature synthesis and preparation of materials is the world of chemists. Therefore, the sol-gel method was propagated to the wide area including not only glasses and ceramics, but also organic and biomaterials.

In 1990, an excellent book entitled "Sol-Gel Science" was written by Brinker and Scherer, obtaining a very high reputation. However, the remarkable scientific and technological development and broadening in the sol-gel field, together with an enormous increase in sol-gel population, appeared to demand publication of a new, comprehensive Handbook on sol-gel science and technology.

Thus, it was planned to publish the present Handbook, which consists of the following three volumes:

Volume 1 Sol-Gel Processing

Volume editor: Prof. Hiromitsu Kozuka

Volume 2 Characterization and Properties of Sol–Gel Materials and Products

Volume editor: Prof. Rui M. Almeida

Volume 3 Applications of Sol–Gel Technology

Volume editor: Prof. Sumio Sakka

Volume 1 compiles the articles describing various aspects of sol-gel processing. Considering that the sol-gel method is a method for preparing materials, the knowledge on sol-gel processing is of primary importance to all those who are interested in sol-gel science and

technology. Articles describing processing of some particular property as well as general basics for sol-gel processing are collected.

Volume 2 consists of the articles dealing with characterization and properties of sol-gel materials and products. Since materials exhibit their functional properties based on their microstructure, characterization of the structure is very important. We can produce useful materials only when processing-characterization-property relationships are worked out. This indicates the importance of the articles collected in Volume 2.

The title of Volume 3 is "Applications of Sol–Gel Technology". The sol–gel technology is one of the methods for producing materials and so there are many other competitive methods, whenever a particular material is planned to be produced. Therefore, for the development of this excellent technology, it is important to know the sol–gel science and technology in producing new materials as well as already achieved applications. This is the purpose of Volume 3.

Sol-gel technology is a versatile technology, making it possible to produce a wide variety of materials and to provide existing materials with novel properties. I hope this three-volume Handbook will serve as an indispensable reference book for researchers, engineers, manufacturers and students working in the field of materials.

Finally, I would like to express my sincere thanks to all the authors of the articles included in the Handbook for their efforts in writing excellent articles by spending their precious time. As general editor I extend my thanks to Prof. H. Kozuka and Prof. R. Almeida for their difficult work of editing each Volume. I have to confess that this Handbook would not have been realized without enthusiastic encouragement of Mr. Gregory Franklin, senior editor at Kluwer Academic Publishers.

Sumio Sakka

Preface to Volume 1 ("Sol-Gel Processing")

Volume 1 entitled "Sol-Gel Processing" has 27 chapters, concerning techniques for sol-gel processing of materials of specified shapes, structure, and chemistry, including chemistry of precursors and special processing techniques.

Sol-gel technology has already long history, starting with processing of oxide materials including glass and ceramics about 30 years ago. However, since then, the technology has been employed in preparation not only of oxides, but also of non-oxide materials including nitrides, carbides, fluorides, and sulfides as well as oxynitride and oxycarbide glasses. Processing of organic-inorganic materials is now a very active field of research, which has been expanded even in the field of biotechnology as is represented by research on encapsulation of enzymes, antibodies and bacteria.

The sol-gel technology started with processing of dense, bulk materials, and great efforts have been made on how to densify porous gels into glasses and ceramics. However, recently sol-gel processing of mesoporous and macroporous materials has also attracted much attention, including materials with well-controlled pore characteristics and highly porous materials, which have excellent chemical and photonic functions. As far as the shape of the products are concerned, powders and fibers are also important products via sol-gel processing, the techniques of which are still in progress. Thin films or coatings are other shaped materials that can be prepared by sol-gel method, which also has already long history. Although dip- and spin-coating methods are very familiar techniques, and science on sol-gel thin film deposition seems to have been established already, there are still technical issues to be solved scientifically for practical fabrication of industrial products. Deposition techniques have now a variety, such as ultrasonic pulverization of aerosols and electrophoretic deposition, and those allowing coating of plastic materials and self-standing thick films have also been developed. There are also special techniques like non-hydrolytic sol-gel technique, which produces unique materials, and UV irradiation that activates the chemical bonds of organic and inorganic components in sol-gel films.

Metal alkoxides are the most important precursors employed in sol-gel processing. The development of synthesis technique is often the key for preparing materials of excellent functions with sophisticated nanostructures. Then, how about other precursors than alkoxides? Sometimes people say that "sol-gel method" exclusively represents processing that undergoes hydrolysis and polycondensation of metal alkoxides, ending up with formation of metalloxane bonds. And also some people say that "sol" represents "colloidal solutions," not "polymer solutions." Prof. Pierre-Gilles de Gennes, who was awarded the Nobel Prize in Physics in 1991, wrote a famous book entitled "Scaling Concepts in Polymer Physics" (Cornel University Press, Ithaca, 1979). In that book, first he precisely describes theoretical aspects of "polymer solutions," which he never calls "sols." Then, he describes the conversion of "polymer solutions" into "gels," which he calls "sol-gel transition," however. No other terms than "sol-gel transition" can represent this kind of conversion, and we should recognize that "sol-gel method" is a processing that passes through "sol-gel transition" irrespective of the kinds of precursors. Science and technology have been greatly developed on (i) metal salt routes for thin film deposition, (ii) polymeric

gel precursors for materials with high homogeneity, and (iii) aqueous precursors ideal for material production in industries.

The current state of science and technology on all of these are covered in Volume 1, and the chapters are grouped in eight parts; (1) Sol–gel precursors, (2) Processing of powders and bulk materials, (3) Processing of non-oxide materials, (4) Processing of thin films, (5) Processing of fibers and monodisperse perticles, (6) Encapsulation of organic materials, (7) Processing of catalysts, porous materials and aerogels, and (8) Special techniques used in sol–gel processing. Each chapter has been written by a leading expert in the field. I hope that Volume 1 will provide great information on the current state of sol–gel processing of materials of specified shapes, structure, and chemistry, including chemistry of precursors and special processing techniques.

Finally I would like to thank all the authors for spending their precious time, and making much efforts to make great contribution to the Handbook. I also thank Mr. Gregory Granklin, senior editor in Kluwer Academic Publishers and Prof. Sumio Sakka for continuous encouragement.

Hiromitsu Kozuka

LIST OF CONTRIBUTORS

VOLUME I

Vadim G. Kessler

Department of Chemistry, SLU Uppsala Sweden

Kazumi Kato

National Institute of Advanced Industrial Science and Technology Nagoya Japan

Keishi Nishio

Department of Materials Science and Technology Faculty of Industrial Science and Technology Tokyo University of Science Noda, Chiba Japan

Toshio Tsuchiya

Department of Materials Science and Technology Faculty of Industrial Science and Technology Tokyo University of Science Noda, Chiba Japan

Valery Petrykin

Institute of Multidisciplinary Research for Advanced Materials Tohoku University Sendai Japan

Masato Kakihana

Institute of Multidisciplinary Research for Advanced Materials Tohoku University Sendai Japan

Yutaka Ohya

Department of Materials Science and Technology Faculty of Engineering Gifu University Gifu Japan

Sumio Sakka

Professor Emeritus of Kyoto University Hirakata, Osaka Japan

Dibyendu Ganguli

Indian Association for the Cultivation of Science Kolkata India

Kanichi Kamiya

Department of Chemistry for Materials Faculty of Engineering Mie University Tsu, Mie Japan

Shinobu Fujihara

Department of Applied Chemistry Faculty of Science and Technology Keio University Yokohama Japan

Rui M. Almeida

Department of Materials Engineering Instituto Superior Técnico Lisboa Portugal

Jian Xu

Department of Materials Engineering Instituto Superior Técnico Lisboa
Portugal
and
Department of Chemistry and Physics
Nottingham Trent University
Nottingham
United Kingdom

Hiromitsu Kozuka

Kansai University Materials Science and Engineering Suita, Osaka Japan

Michel Langlet

Laboratoire des Matériaux et du Génie Physique Institut National Polytechnique de Grenoble Domaine Universitaire de Saint Martin d'Hères France

Atsunori Matsuda

Department of Materials Science Toyohashi University of Technology Toyohashi, Aichi Japan

Masahiro Tatsumisago

Department of Applied Materials Science Graduate School of Engineering Osaka Prefecture University Sakai, Osaka Japan

Masayuki Yamane

Emeritus Professor Tokyo Institute of Technology Yokohama Japan

Shin-ichi Hirano

Department of Applied Chemistry Graduate School of Engineering Nagoya University Nagoya Japan

Wataru Sakamoto

EcoTopia Science Institute Nagoya University Nagoya Japan

Subramanian Ramakrishnan

Department of Chemical and Biomolecular Engineering University of Illinois Urbana, Illinois USA

Charles F. Zukoski

Department of Chemical and Biomolecular Engineering University of Illinois Urbana, Illinois USA

Kazunori Matsui

Department of Applied Material and Life Science College of Engineering Kanto Gakuin University Yokohama Japan

Jacques Livage

Laboratoire de Chimie de la Matière Condensée Université Pierre et Marie Curie Paris France

Thibaud Coradin

Laboratoire de Chimie de la Matière Condensée Université Pierre et Marie Curie Paris France

Akifumi Ueno

Department of Materials Science Shizuoka University Hamamatsu, Shizuoka Japan

Kazuki Nakanishi

Department of Material Chemistry Graduate School of Engineering Kyoto University Kyoto Japan

Karen J. Edler

Department of Chemistry University of Bath Bath United Kingdom

Jean Phalippou

Laboratoire des verres Université de Montpellier II Montpellier France

Thierry Woignier

Laboratoire des verres Université de Montpellier II Montpellier France

Florence Despetis

Laboratoire des verres Université de Montpellier II Montpellier France

Sylvie Calas

Laboratoire des verres Université de Montpellier II Montpellier France

André Vioux

Laboratoire de Chimie Moleculaire et Organisation de Solide Université de Montpellier 2 Place Eugene Bataillon France

Pierre Hubert Mutin

Laboratoire de Chimie Moleculaire et Organisation de Solide Université de Montpellier 2 Place Eugene Bataillon France

Hiroaki Imai

Department of Applied Chemistry Faculty of Science and Technology Keio University Yokohama Japan

VOLUME II

Kanichi Kamiya

Department of Chemistry for Materials Faculty of Engineering Mie University Tsu, Mie Japan

Francesco d' Acapito

Istituto Nazionale per la Fisica della Materia OGG—European Synchrotron Radiation Facility Grenoble France

Mark E. Smith

Department of Physics University of Warwick Coventry United Kingdom

Diane Holland

Department of Physics University of Warwick Coventry CV4 7AL United Kingdom

Rui M. Almeida

Department of Materials Engineering Instituto Superior Técnico Lisboa Portugal

Ana C. Marques

Department of Materials Engineering Instituto Superior Técnico Lisboa Portugal

Maurizio Montagna

Department of Physics University of Trento

xiv

LIST OF CONTRIBUTORS

Povo Italy

Diane Holland

Department of Physics University of Warwick Coventry CV4 7AL United Kingdom

Plinio Innocenzi

Dipartimento di Architettura e Pianificazione Laboratorio di Scienza dei Materiali e Nanotecnologie Università di Sassari Alghero (SS) Italy

Giovanna Brusatin

Dipartimento di Ingegneria Meccanica Università di Padova Padova Italy

Massimo Gugliemi

Dipartimento di Ingegneria Meccanica Università di Padova Padova Italy

Florence Babonneau

Chimie de la Matiere Condensee Université de Paris Paris France

Aldo F. Craievich

Institute of Physics University of Sao Paulo Sao Paulo Brazil

Kazuki Nakanishi

Department of Materials Chemistry Graduate School of Engineering Kyoto University Kyoto Japan

Kiyoharu Tadanaga

Department of Applied Materials Science Graduate School of Engineering Osaka Prefecture University Sakai, Osaka Japan

Tsutomu Minami

Department of Applied Materials Science Graduate School of Engineering Osaka Prefecture University Sakai, Osaka Japan

René Pirard

Université de Liege Laboratoire de Genie Chimique Institut de Chimie Liege Belgium

Christelle Alié

Université de Liege Laboratoire de Genie Chimique Institut de Chimie Liege Belgium

Jean-Paul Pirard

Université de Liege Laboratoire de Genie Chimique Institut de Chimie Liege Belgium

Sumio Sakka

Professor Emeritus of Kyoto University Hirakata, Osaka Japan

Hiroshi Yokogawa

Coating Business Promotion Group Matsushita Electric Works, Ltd. Kadoma, Osaka Japan

T. Woignier

Laboratoire des Verres Université de Montpellier II Montpellier France

Jean Phalippou

Laboratoire des verres Université de Montpellier II Montpellier France

F. Despetis

Laboratoire des Verres Université de Montpellier II Montpellier France

P. Etienne

Laboratoire des verres Université de Montpellier II Montpellier France

A. Alaoui

Laboratoire des verres Université de Montpellier II Montpellier France

L. Duffours

Laboratoire des verres Université de Montpellier II Montpellier France

Michel A. Aegerter

Leibniz-Institut fuer Neue Materialien gem. GmbH (INM) Saarbruecken Germany

John D. Mackenzie

Department of Materials Science and Engineering University of California, Los Angeles California, USA

Eric P. Bescher

Department of Materials Science and Engineering University of California, Los Angeles California, USA

Giancarlo C. Righini

Optoelectronics and Photonics
Department
Nello Carrara Institute of Applied Physics
CNR-National Research Council
Firenze
Italy

Eric Yeatman

Department of Electrical and Electronic Engineering Imperial College of Science, Technology and Medicine London United Kingdom

Maurizio Ferrari

CNR-IFN, Istituto di Fotonica e Nanotechnologie CSMFO Group Povo-Trento Italy

Hiroyuki Nasu

Department of Chemistry for Materials Faculty of Engineering Mie University Kamihama Tsu, Mie Japan

Feng Liu

Departments of Chemistry and Materials Science and Engineering Johns Hopkins University Baltimore, Maryland USA

Mei Yang

Departments of Chemistry and Materials Science and Engineering Johns Hopkins University Baltimore, Maryland USA

Gerald J. Meyer

Departments of Chemistry and Materials Science and Engineering Johns Hopkins University Baltimore, Maryland USA

Yuhuan Xu

Department of Materials Science and Engineering University of California, Los Angeles California, USA

John D. Mackenzie

Department of Materials Science and Engineering University of California, Los Angeles California, USA

Joerg Puetz

Leibniz-Institut fuer Neue Materialien gem. GmbH (INM) Saarbruecken Germany

Sabine Heusing

Leibniz-Institut fuer Neue Materialien gem. GmbH (INM) Saarbruecken Germany

Michel A. Aegerter

Leibniz-Institut fuer Neue Materialien gem. GmbH (INM) Saarbruecken Germany

VOLUME III

Sumio Sakka

Professor Emeritus of Kyoto University Hirakata, Osaka Japan

Dennis J. Trevor

OFS Laboratories Murray Hill, New Jersey USA

Kazuki Nakanishi

Department of Material Chemistry Graduate School of Engineering Kyoto University Kyoto Japan

Hiroshi Yokogawa

Coating Business Promotion Group Matsushita Electric Works, Ltd. Kadoma, Osaka Japan

Jean Phalippou

Laboratoire des verres Université de Montpellier II Montpellier France

P. Dieudonne

Laboratoire des verres Universite de Montpellier II Montpellier France

A. Faivre

Laboratoire des verres Universite de Montpellier II Montpellier France

T. Woignier

Laboratoire des Verres Université de Montpellier II Montpellier France

P. Sujatha Devi

Central Glass and Ceramic Research Institute Kolkata India

Dibyendu Ganguli

Indian Association for the Cultivation of Science Kolkata India

Christian Guizard

Institut Europeen de Membranes Montpellier France

Andre Ayral

Institut Europeen de Membranes Montpellier France

Mihai Barboiu

Institut Europeen de Membranes Montpellier France

Anne Julbe

Institut Europeen de Membranes Montpellier France

Tatsuhiko Adachi

Ube-Nitto Kasei Co., Ltd. Gifu Japan

Thomas E. Wood

3M Company St. Paul, Minnesota USA

Dwight D. Erickson

3M Company St. Paul, Minnesota USA

Mark G. Schwabel

3M Company St. Paul, Minnesota USA

Chris J. Goodbrake

3M Company St. Paul, Minnesota USA

Kanichi Kamiya

Department of Chemistry for Materials Faculty of Engineering Mie University Tsu, Mie Japan

Masayuki Nogami

Department of Materials Science and Engineering Nagoya Institute of Technology Nagoya Japan

Renata Reisfeld

Department of Chemistry Hebrew University Jerusalem Israel

Makoto Kuwabara

Interdisciplinary Graduate School of Engineering Science Kyushu University Kasuga, Fukuoka Japan

Michael Graetzel

Laboratory of Photonics and Interfaces Swiss Federal Institute of Technology Lausanne Switzerland

Lisa C. Klein

Rutgers University Ceramic & Materials Engineering Piscataway, New Jersey USA

Mario Aparacio

Consejo Superior de Investigaciones Cientificas Instituto de Ceramica y Vidrio Campus de Cantoblanco Madrid Spain

Francoise Damay

Laboratoire Leon Brillouin Gif-sur-Yvette France

Ovadia Lev

The Casali Institute of Applied Chemistry The Chemistry Institute The Hebrew University of Jerusalem Jerusalem Israel

xviii

LIST OF CONTRIBUTORS

D. Rizkov

The Casali Institute of Applied Chemistry
The Chemistry Institute
The Hebrew University of Jerusalem
Jerusalem
Israel

S. Mizrahi

The Casali Institute of Applied Chemistry The Chemistry Institute The Hebrew University of Jerusalem Jerusalem Israel

I. Ekeltchik

The Casali Institute of Applied Chemistry The Chemistry Institute The Hebrew University of Jerusalem Jerusalem Israel

Z. G. Kipervaser

The Casali Institute of Applied Chemistry
The Chemistry Institute
The Hebrew University of Jerusalem
Jerusalem
Israel

V. Gitis

The Casali Institute of Applied Chemistry
The Chemistry Institute
The Hebrew University of Jerusalem
Jerusalem
Israel

A. Goifman

The Casali Institute of Applied Chemistry
The Chemistry Institute
The Hebrew University of Jerusalem
Jerusalem
Israel

A. Kamyshny, Jr.

The Casali Institute of Applied Chemistry The Chemistry Institute The Hebrew University of Jerusalem Jerusalem Israel

A. D. Modestov

The Casali Institute of Applied Chemistry The Chemistry Institute The Hebrew University of Jerusalem Jerusalem Israel

J. Gun

The Casali Institute of Applied Chemistry The Chemistry Institute The Hebrew University of Jerusalem Jerusalem Israel

Naoya Yoshida

Research Center for Advanced Science and Technology The University of Tokyo Tokyo Japan

Toshiya Watanabe

Research Center for Advanced Science and Technology The University of Tokyo Tokyo Japan

Hirokazu Tanaka

Nippon Sheet Glass Co., Ltd. Ichihara, Chiba Japan

Shigeki Obana

Nippon Sheet Glass Co., Ltd. Ichihara, Chiba Japan

Alicia Duran

Instituto de Ceramica y Vidrio (CSIC) Campus de Cantoblanco Madrid Spain

Yolanda Castro

Instituto de Ceramica y Vidrio (CSIC) Campus de Cantoblanco Madrid Spain

Ana Conde

Centro Nacional de Investigaciones Metalurgicas (CSIC) Madrid Spain

Juan José de Damborenea

Centro Nacional de Investigaciones Metalurgicas (CSIC) Madrid Spain

Koichi Takahama

Matsushita Electric Works Kadoma, Osaka Japan

S. Amberg-Schwab

Fraunhofer-Institut fur Silicatforschung Wuerzburg Germany

Eric P. Bescher

Department of Materials Science and Engineering University of California, Los Angeles California, USA

John D. Mackenzie

Department of Materials Science and Engineering University of California, Los Angeles California, USA

Plinio Innocenzi

Dipartimento di Architettura e Pianificazione Laboratorio di Scienza dei Materiali e Nanotecnologie Università di Sassari Alghero (SS) Italy

Jochanan Blum

Institute of Chemistry
The Hebrew University of Jerusalem
Jerusalem
Israel

David Avnir

Institute of Chemistry
The Hebrew University of Jerusalem
Jerusalem
Israel

Akiyoshi Osaka

Department of Bioscience and Biotechnology Faculty of Engineering Okayama University Okayama Japan

Kanji Tsuru

Department of Bioscience and Biotechnology Faculty of Engineering Okayama University Okayama Japan

Satoshi Hayakawa

Department of Bioscience and Biotechnology Faculty of Engineering Okayama University Okayama Japan

Caner Durucan

Department of Materials Science and Engineering Materials Research Institute The Pennsylvania State University University Park, Pennsylvania USA

Carlo G. Pantano

Department of Materials Science and Engineering Materials Research Institute The Pennsylvania State University University Park, Pennsylvania USA

Shiro Saka

Department of Socio-Environmental Energy Science Graduate School of Energy Science