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Preface

For some time college curricula have offered general education mathe-
matics courses in an effort to produce a well-rounded (to use the phrasing
of college catalogs) liberal arts student. Yet it does not follow that by
taking one or two mathematics courses a student acquires instant round-
ness. And often the people who establish such requirements know little
about mathematics as a twentieth-century discipline or its influence on
Western culture.

This book attempts to convey a feeling for what mathematics is to a
mathematician by giving the student some experience in mathematics in a
general context and then exposing him to a particular aspect in depth. The
“shotgun” approach to mathematics is eschewed as being not only mis-
leading but also uninteresting. If nonmathematically inclined students are
required to take mathematics, then the subject should at least be made
interesting. Since mathematics is interesting—intellectually exciting and
aesthetically pleasing—to those of us who teach it, I hope that, in this book,
some of this excitement and enjoyment can be passed on to the student.

The text was class-tested at Armstrong State College, and the following
formula was found to be most successful: Chapters 1 to 3 were covered
during the first quarter, on four of the five class days each week. Chapter
4 or 5 was covered during the second quarter, also four days each week.
On the fifth day of the week each quarter, there was a class discussion of
one or two chapters of a book on the history of mathematics,* which tied
in nicely with a history of Western Civilization course (usually required of
college freshmen everywhere) and which made the student aware that
mathematics was developed by and for people. The use of such supple-
mentary material is extremely important for the success of the course.

If the students already have some background in mathematics, much of
Chapters 1 to 3 may be used as review material. It may be advantageous
to devote the entire quarter to one chapter, such as Chapter 4 or 5. The

* In this instance, Mathematics in Western Culture by Morris Kline (New York:
Oxford University Press, 1964). Other books could serve as well; for example, Men
of Mathematics by E. T. Bell (New York: Simon and Schuster, 1961).
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viii Preface

student may then see theories developed and problems raised and solved,
and observe some of the beauty that is internal to mathematics—for exam-
ple, the neat proof. If the teacher does not share my enthusiasm for
number theory and measure theory, he is encouraged to procure material
for the second quarter on a topic that he likes; the bibliography lists some
books on geometry, topology, the real numbers, and algebra which might
be appropriate.

Chapters 1 to 3 are also appropriate for students in education. The
elementary education major will find these chapters a good prerequisite
for a theory of arithmetic course, and the student preparing for junior high
school teaching will find that he can easily move into a course on the real
number system. Although the book is not intended to replace mathematics
texts written for education majors, Chapters 1 to 3 will prepare students
for further study in such topics as arithmetic, the structure of the real
number system, and informal geometry.

I am grateful to Dr. F. Lane Hardy, head of the Department of Mathe-
matics, Armstrong State College, for his helpful criticism and constant
encouragement; to Mr. Richard W. Hansen, president of Dickenson Pub-
lishing Company, Inc., for the same; to Professor Bevan Youse of Emory
University for his fine critical reading of the manuscript; to Miss Linda J.
Faircloth for her excellent job of typing and never-ending patience with my
handwriting; and to Mr. Ken Williams of IBM for helping us when we
were in typing trouble. Many people have contributed to the writing and
completion of this book, the most patient and helpful being the Armstrong
students, who have given this Yankee many valuable suggestions.

Savannah, Georgia WALTER B. LAFFER II
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Logic and Sets

1.1. Truth Tables

In studying various disciplines you have no doubt discovered that you
must know what is accepted as truth in the given discipline. Unless you know
what truth is—or, more realistically, what the criteria are for determining
whether certain statements are true in the given subject—your chance of
survival in that subject is small. In some subjects, unfortunately, certain state-
ments or phenomena are true because the professor says so. In others, the test
for truth depends on our ability to transform the statement into a laboratory
experiment, the truth of the statement being determined by the results of the
experiment. We shall not delve into the philosophical question, “What is
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2 Chapter 1. Logic and Sets

truth ?”” Rather we offer a question for reflection: ““Does truth mean the same
to each of the following: a religious mystic, a chemist, a politician, a child
absorbed in a fairy tale, a poet, a historian, a sociologist, a psychopathic killer,
and a mathematician ?”’

The kind of truth we shall concern ourselves with is sometimes called
““conditional truth.” The reason is that mathematics concerns itself with con-
ditional statements. A conditional statement is made up of at least two sub-
statements, and its truth depends upon the truth of those substatements. For
example, consider the statement, “If x is a prime number* larger than 7, then
the decimal representation of x must end ina 1, 3, 7, or 9.”” The substatements
here are ““x is a prime number larger than 7 and ‘“‘the decimal representation
of x must end in a 1, 3, 7, or 9.” These substatements are connected by the
common connective form, “if ..., then ....”” The truth of the statement, “If
x is a prime number larger than 7, then the decimal representation of x must
endina l, 3,7, or9,” is dependent upon the truth of the substatements.

From now on instead of using the word “substatement” we shall use the
word statement or proposition, and we shall assign to every statement a truth
value. We shall use lower-case letters such as p, g, r, ... to stand for proposi-
tions. For the moment we shall not concern ourselves with the meaning of
these statements. We shall allow only two possible truth values—namely, true
and false. We denote these values by the letters 7and F. Our interest now is in
discovering the truth values for new propositions that are formed out of old
propositions whose truth values are known.

At first we shall talk only about propositions that are formed by connect-
ing two propositions by some connective such as “and,” or ““if ..., then...,”
or “either ... or ....” The truth values of propositions formed by combining
more than two propositions will be derivable from the rules governing the
truth values of propositions formed by combining only two propositions.

Our standard procedure will be to define the truth values of compound
propositions as follows:

P q Something
T T A
T F B
F T C
F F D

The first two columns represent all the possible combinations of truth values
of p and g together. You will note that we have (row 1) p is true and ¢ is true,
(row 2) p is true and q is false, (row 3) p is false and g is true, (row 4) p is false

* A prime number is a whole number greater than 1 that is divisible by itself and by
1 only. The first eight primes are 2, 3, 5, 7. 11, 13, 17, and 19.



Sec. 1.1. Truth Tables 3

and g is false. The column labeled “Something” will be in practice the new
proposition. The letters A, B, C, and D will be either T’s or F’s. This table is
called a truth table.

For instance, if p and g are two propositions, then we introduce the com-
pound statement “p and ¢.” We denote this new statement by p A q. The
wedge (A) is our shorthand way of saying “and.” We note that the truth
value of the proposition p A ¢ is dependent upon the truth values of the
propositions p and g. In fact, there are four possibilities for the combined
truth values of p and gq. These are: p is true and g is true; p is true and ¢ is
false; p is false and ¢ is true; p is false and ¢ is false. From these four possibili-
ties we assign corresponding truth values to the compound proposition p A g.
These would be: for p true and g true, then p A g is true; for p true and g false,
then p A g is false; for p false and g true, then p A g is false; for p false and g
false, then p A g is false. The values we have assigned to p A g are in accord
with ordinary everyday usage. The compound sentence “p and g’ is true only
when both p and g are true.

The analysis just given can be shortened and represented in a truth table as
follows:

SIEIEIEIR
SIEIRIEIER
CIEIR IS

P A q is called the conjunction of p and q. The truth table above defines the
symbol p A q for us.

Before defining further combinations of two propositions, we shall talk
about one very important concept: negation. The symbol “~p” means the
negation of the proposition p. We read “~p” as “not p.”

We define ~p in the following way:

p ~p
T F
F T

When p is true, then ~p is false, and when p is false, then ~p is true.
The following combinations of propositions as well as the definitions
above should be learned so that we can use them later on.
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We read “p v g as “p or ¢”; this is called the disjunction of p and g and
is defined by the following table:

w| NN s
IR
| NSNS <

We read “p — ¢ as “p implies ¢’ or “if p, then ¢”°; this is called the
conditional and is defined by the table below:

p q p—q
T T T
T F F
F T T
F F T

Suppose p is the statement, ““x is greater than 12,”” and q is the statement,
“y is less than 3.” Then p Vv ¢ is the compound statement, ““Either x is
greater than 12, or y is less than 3.” In compliance with ordinary usage,
certainly, this compound sentence is false only when x is less than or equal to
12 and y is greater than or equal to 3. In all other cases involving x and y the
compound sentence is true.

For p — ¢ we have, using the statements above for p and for ¢, “If x is
greater than 12, then y is less than 3.”” We see that this compound sentence is
false only when x is greater than 12, and y is greater than or equal to 3—that
is, x is greater than 12, and y is not less than 3. This use of the connective,
“If ..., then ...,” is in accord with ordinary usage.

The last two rows of the truth table for p — g are probably not in accord
with common usage. The reason is that in common usage we do not consider
these last two possibilities. Since we are defining p — g by means of this truth
table, we must complete the table to complete the definition, and it is custom-
ary to complete the table in the manner shown above. What these two rows
are saying intuitively is that from a false hypothesis if we deduce a true state-
ment then the deduction was valid or if we deduce a false statement then the
deduction was valid.

A scientist who is interested in testing his hypotheses and theories by com-
paring results obtained by inference with results obtained by experiment
always assumes that his inferences are valid. Thus if experimental results dis-
agree with theory, he is forced to use the fourth row of the p — g truth table
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and thus admit that his hypothesis is false. He then, hopefully, modifies his
theories and starts experimenting again.

We define “p<«>q” as (p —¢q) A (¢ — p). Thisis read “p if and only if g
or “p is logically equivalent to q.” From what we have done we can compute
the truth table for p«>g:

P q p—>q q—p (p—>q9) A(@—p)
T T T T T
T F F T F
F T T F F
F F T T T

In computing the final column above we have used the definition of “A.” In
the third column above let us for brevity give the name “a’ to “p —¢” and in
the fourth column the name “b” to “q — p.” Then the third, fourth, and fifth
columns become:

Q

NN SN
NIw[N(N |
N[ w[mN] >

We have computed the truth value for a A b from the defining table for “A.”
For instance, if a is false and b is true (second row), then a A b is false—and
SO on.

Thus, when we leave out the intermediate computational steps, our table
for “p«>q” is:

SEIEIRIR
IR
IR I

We note that for p <> g to be true, p and ¢ must have the same truth value.
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We shall show that “p —¢” and “(~p) Vv ¢’ are logically equivalent.
We do this by means of a truth table:

P q ~p p—>q (~p)Vq (p—q)—(~p) Vg
T r F T T T
T F F F F T
F T T T T T
F F 4 3 T T

Now since “p — ¢’ and “~p Vv g” have the same truth values for the cor-
responding values of p and g, we may write

(p—=q(~pV q)

Here we note that the compound proposition “(p —q)«<> (~p V q)” is
always true. That is, no matter what truth values p and ¢ may have, “(p — q)
< (~p V q)” always has the truth value T.

There are two things to observe in the demonstration above. First, we
have implicitly used a substitution. That is, if we let x stand for p — ¢ and y
for ~p Vv g, then in the last three columns we would have:

=X Y

NNIm| N =
SIEIEIEIE
NINININT

This is in complete accord with the truth table for “p«>¢.” We have agreed
that the truth table for p <> ¢ (and indeed for any expression) is independent
of what p and g are. That is, p and ¢ could be very complicated compound
propositions or very simple propositions. Nonetheless, we have said that
when two propositions p and ¢ (or x and y) have the same truth value, then
p<>q (or x<>y) is true. We have used this idea in the previous example,
where we deduced the truth table for p <> g. We used the truth table for p A gq.
Welet a be p — g and b be g — p; then we computed the values fora A b. We
shall continue to use this process of substitution. We shall admit it as a valid
process, and we shall probably not make definite mention of it again. You
should be aware of this process, as it will come in very handy when you are
asked to derive truth tables.

The second observation in this demonstration—that (p — q) is logically
equivalent to (~p Vv g)—is that under the column (p —q)<«> (~p Vv q) we
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have all 7’s. We have thus arrived at a certain combination of propositions
that is ““always true”—in the sense that no matter what truth values p and ¢
have, the compound proposition has the value 7. When this occurs, the com-
pound proposition is called a fautology. We shall proceed to derive tautologies,
for these will be our rules of inference or deduction.

Suppose we let p be the statement, ‘It is raining.” Then ~p is the state-
ment, “It is not raining.”” Now if someone were to say to you, “p V ~p”—
that is, “Either it is raining, or it is not raining”’—then you would probably
find it hard to believe that this someone had uttered anything very earth-
shaking. Most of us would agree that this type of statement was obviously
true. Our first theorem formally confirms what we already know from
common usage.

THEOREM 1.1.1. p V ~p is a tautology.

Proof. We set up the truth table as shown. Our substitution has been
to let ~p play the role of ¢ in the truth table for p v gq.

D ~p pN~p

T F T

F T T
Exercises

1. Show that the following are tautologies.
(@ p—p. (b) pp.
© [(poa) A (@on]—(peor). (@ ~(p A @) (~p V ~q).
© ~( Vg (~pA~g.
The tautology in (b) is called the reflexive property of logical equivalence. The
tautology in (c) is called the transitive property of logical equivalence. The
tautologies in (d) and (e) are called DeMorgan’s laws.
2. Determine which of the following are tautologies. Write a truth table in each

case.

@ [(~p vV @) A pl—>q. ) [(p V g) A ~ql p.
© (p—q —p. @pAg—q.

@© p—=a A@—=n]l—(@-—n. ) ~(p vV~ ~p Vv gq.

(® (p—>q) —q.

1.2. Rules of Inference

We proceed to derive more tautologies. You should memorize the
tautologies that have been given so far, including those in the exercises. These



