BURNHAMS
- CELESTIAL HANDBOOK

An Obseryers Guide to the Universe
Be)gond the Solar System

gk InThree Volumes.
Volume Three, PavoThrough Vulpecula



1967319

BURNHAM’S
CELESTIAL HANDBOOK

An Observer’s Guide tc the Universe
Beyond the Solar System

|
(1
| 1
i
|
i
|

E7967319




CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Mclbourne, Madrid, Cape Town, Singapore, Sdo Paulo, Dclhi

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521110433

© M. Nemcok, S. Schamel and R. Gaycr 2005

This publication is in copyright. Subjcct to statutory exccption
and to thc provisions of rclevant collective licensing agrcements,
no reproduction of any part may take placc without the written
permission of Cambridge University Press.

First published 2005
This digitally printed version 2009

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-82294-7 hardback
ISBN 978-0-521-11043-3 paperback

Additional resourccs for this publication at www.cambridge.org/9780521110433

Cambridge University Press has no responsibility for the persistence or
accuracy of URLs for cxternal or third-party Internct websites referred to in
this publication, and docs not guarantcc that any content on such websitcs s,
or will remain, accurate or appropriatc.



O Night, sweet though sombre space of time

All things find rest upon their journey’s end
Our cares thou canst to quietude sublime;

For dews and darkness are of peace the friend.

MICHELANGELO
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This book aims to provide a comprehensive under-
standing of thrustbelts as a whole. The aim is to syn-
thesize existing information devoted to specific aspects
of these important hydrocarbon habitats. The book
assembles this information in one volume, in a manner
that permits the knowledge to be used to assess the risks
of exploring and operating in these settings.

The plan for this book originated with a project called
Systematics of Hvdrocarbon Exploration and Production
in Thrustbelts, which summarized various aspects of
exploration and production in thrustbelt settings pro-
vided by a large and diverse literature, and addressed
gaps in knowledge.

This synthesis is completed from results of personal,
long-term research on thrustbelts, numerical valida-
tions of various concepts and extensive tables docu-
menting various factors influencing structural styles,
thermal regimes and petroleum systems, as well as rates
of various modern geological processes. The book con-
tains an enclosed database on characteristic features of
existing hydrocarbon fields in thrustbelts, which serves
as further documentation. This book should have value
to a broad range of readers, from geology students to
exploration managers searching for the character of
producing fields in analogous settings. The book is
divided into four parts.

Part I defines the scope of the book, with the thrust-
belt being defined broadly enough to include conven-
tional thrustbelts, transpressional ranges, toe thrusts and
accretionary prisms. It describes fundamental structural
styles and variation of styles in thrustbelts, illustrated by
worldwide thrustbelt data, including their location, age,
tectonic character and vergency. The text follows with
descriptions of the thrust wedge development, covering
the two-dimensional frictional Coulomb wedge model,
its limitations, its extension to three dimensions and
additions to handle the brittle—ductile transition. The
section on wedge mechanics is followed by thrust sheet
mechanics, focusing on the rheological-stress control of
the resultant thrust structures and the energy balance
behind the chance that the active thrust sheet witnesses
the propagation of a new thrust sheet, whether it experi-
ences reactivation of existing faults, whether it under-
goes further movements or whether it experiences
internal deformation. Sandbox modelling and examples
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from the Taiwan thrustbelt and the West Carpathians,
for example, document the role of the energy balance on
complex thrust fault activity, including numerous out-
of-sequence thrusting events. Subsequent chapters of the
first part define thin- and thick-skin structures in thrust-
belts, stress control on development, the importance
related to hydrocarbon accumulation and the potential
translation under subsequent shortening. These chapters
are illustrated with geological cross sections, outcrop
photographs and seismic data. The part concludes with
descriptions of available methods for determination of
thrust timing and related deformation rates.

Part II focuses on the importance of various factors
controlling the structural architecture of thrustbelts. It
was written with specific questions in mind. How do
pre-existing structures affect the evolving structural
style? What is the role of sedimentary rheology in the
evolving structural style and which geological factors
are most important in this role? How can knowledge of
these factors be used to constrain geometric interpreta-
tions of structures? How do fluids influence the struc-
tural architecture, what are the fluid mechanisms in
thrustbelts and how does one determine fluid sources,
sinks and overpressure-buildup mechanisms?

Part Il draws from physical phenomena described in
Part 1 and analyses the importance of large-scale
influencing factors. Sedimentary rheology is broken
downinto factorssuch as therelative strength of the rocks
involved, rock lithification stages and how rocks are
organized in the stratigraphic package by means of indi-
vidual layer strengths, layer thicknesses, layer patterns
and friction along their contacts, illustrated by extensive
rock mechanics tables and factor interaction calculations.
The text also focuses on rock layers undergoing deforma-
tion, how this may control reservoir horizons and trap
geometries that could result from various combinations
of rheologies and stress regimes. Fault-prone sequences
become shortened by fault-bend folds, basement uplifts
or inverted grabens. Sequences with upper weak layers
and underlying stronger layers enhance the potential for
passive roof duplexes, whereas little strength difference
combined with high basal friction enhances foreland-
vergent structures. Fold-prone sequences undergo
detachment folding. Examples such as those from the
Bolivian sub-Andean thrustbelt document how orogen
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strike-parallel changes in lithostratigraphy of accreted
sediments can account for varying structural architecture
under the same stress regime. A simple stress control
argument indicates why the large number of interpreted
fault-propagation folds may be faulted detachment folds.
Numerical models and global examples document con-
trols on the relative locations of detachment faults.

The text describes how the combination of rheology
and stress in control of structural architecture becomes
complicated in the upper 10-15km of the crust, which
contains pre-existing structures. It also explains how
syntectonic deposition and erosion introduce further
complexity. Modern-day rates of deposition and
erosion from various thrustbelt settings are illustrated in
extensive tabulated databases. The contribution of
erosion and deposition resides not only in their effect on
the thrustbelt itself, but also on the sediments to be
accreted later, which in turn affect the thrustbelt devel-
opment during accretion. Thick foreland sediments
enhance the width and advance distance of the thrust-
belt whereas thin sediments promote its internal defor-
mation. Variable distribution of syn-tectonic sediments,
together with variable sedimentary taper of the foreland
basin, may produce a spectrum of structural styles, due
to varying thrust spacing, various thrust trajectories
and strength contrasts.

The text on fluid flow identifies the topography-
driven/compaction-driven fluid flows as the main fluid
flow mechanisms in thrustbelts. Although thrustbelts
contain a variety of fluid sources, only compaction-
released fluids, release of the structurally bound
water from smectite, fluids produced by the gypsum-to-
anhydrite transformation and hydrocarbon expulsion
account for overpressure generation controlling the
structural architecture. Fault cores sandwiched between
high-fracture density damage zones are the most likely
fluid migration paths in active thrustbelts with a ten-
dency to collapse after their movement stops. The fluid
flow along main detachment faults and ramps typically
has a transient character.

Part III focuses on the importance of various factors
controlling thermal regimes in thrustbelts. It addresses
the following questions. What are the effects of pre-oro-
genic heat flow on subsequent thermal regimes? What
are the effects of deformation on thermal regimes?
What are the roles of stratigraphic development in
thermal regimes, via thermal conductivity, specific heat
and radioactive heat production? How does strati-
graphic distribution affect the thermal regime? What are
the roles of various fluid flow mechanisms in perturbing
thermal regimes? How can the advective component of
the heat transport be recognized? What are the roles of
deposition and erosion in thermal regimes?
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Part II1 builds on extensive tables of modern move-
ment rates of plates and thrust sheets, and data sets on
thermal conductivity, thermal diffusivity, specific heat
capacity and heat production of rocks involved in
thrustbelts. The review of natural slip rates for thrust
sheets shows a characteristic range of 0.3-4.3mmyr"!,
documented by minimum values from the Wyoming
thrustbelt, the Perdido foldbelt in the Gulf of Mexico
and the Argentinean Precordillera, by intermediate
rates from the Pyrenees and the North Apennines, and
by maximum rates from the San Joaquin basin and the
Swiss Molasse basin.

Part 111 identifies, also drawing from new numerical
modelling, the order of importance of various factors
on thermal regimes. The list starts with factors as
important as the presence or absence of syn-tectonic
deposition/erosion, the pre-tectonic heat flow and the
presence of critical fluid flow regimes. The part follows
with factors such as the thermal blanketing potential of
the uppermost layers of the accreted sequence, the slip
rate, the accreted sequence lithology, the basal frictional
heat and the radiogenic heat. The list ends with the
lithology of detachment horizons and internal strain
heating. Discussed perturbations in thrustbelts indicate
that the thrust displacement of rock layers character-
ized by different heat production produces vertical and
lateral thermal gradients.

Among fluid flow mechanisms, only the topography-
driven and compaction-/compression-driven fluid flows
are capable of affecting the thermal regime of a thrust-
belt more than locally. The impact of both mechanisms
is important because the flow rates can be greater
than 10myr~'. While the topography-driven flow is gen-
erally robust enough to achieve such flow rates, the
compaction-/compression-driven flow usually requires
a flow enhancement, such as flow focusing by faults. The
advective component of the heat transport in thrust-
belts is recognized either by analytical calculations or by
analysis of maturation data. The surface heat flow in
thrustbelts also responds quickly to deposition and
erosion, but recovers slowly after the end of activity.
Whereas the erosion increases the surface heat flow, the
heat flow is significantly depressed by deposition rates
equal to or greater than 0.l mmyr~!. The deposition can
also depress the heat flow due to overpressure develop-
ment. Examples (e.g., Kura basin in Azerbaijan) docu-
ment that this phenomenon is caused by retarded heat
transfer through undercompacted sediments.

Part IV focuses on the importance of various factors
controlling petroleum systems in thrustbelts. It empha-
sizes the following questions.

What factors control the deposition and quality of
source rocks in thrustbelts? What factors control the ini-
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tiation and termination of hydrocarbon expulsion?
What factors impact hydrocarbon migration, and how?
What types of traps dominate in thrustbelts? What
kinds of lithological seals are typical in thrustbelts and
what factors control their sealing quality? What types of
fault seals are typical in thrustbelts and what factors
control their sealing quality? What factors enhance and
destroy reservoir rocks, and how? What is the optimal
timing for operation of the petroleum system?

Part IV discusses the critical presence of quality
source rocks in correct stratigraphic and structural posi-
tions to have reached maturity near the close of, or fol-
lowing, thrusting. For example, burial beneath about
2km of sediments shed into the Green River basin from
the flanking Paleocene—Eocene Rocky Mountain uplifts
was responsible for the post-thrust hydrocarbon gener-
ation from the Lower Cretaceous foreland basin source
rocks in the Late Cretaceous Wyoming—Utah thrust-
belt. However, source rock distributions in thrustbelts
show a large variety of depositional settings and source
rock quality and the magnitude of hydrocarbon reserves
also vary. Generally, the deposition of source rocks is
independent of the tectonic events that led directly to
thrusting, but specific depositional settings appear to
favour both quality source rocks and eventual contrac-
tional tectonics. These include eustatically flooded
passive margin basins, silled pull-apart basins and syn-
orogenic foreland basins. Typically, oil-prone black
shales are deposited in the distal portions of the basins
and gas-prone, coaly rocks characterize the proximal
parts of the basins.

Rapid burial associated with thrust imbrication, fol-
lowed by rapid post-thrusting rebound and erosion,
perturb thermal gradients and complicate source rock
maturation. Thrusts and associated fracture systems
serve as conduits for migration of hydrocarbons and
connate waters from the hydrocarbon kitchens to traps,
and for the inward flux of meteoric waters that in time
flush or degrade pooled hydrocarbons. Rock deforma-
tion and fluid migration during thrusting both enhance
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and degrade the quality of reservoirs. The majority of
hydrocarbon fields reside in broad, simple anticlines in
parts of thrustbelts where overall shortening and inter-
nal strains are relatively small. These folds are domi-
nantly detachment and fault-propagation folds with a
large radius of curvature in cross section (e.g., the
Zagros foldbelt in Iran, the sub-Andean thrustbelt in
Bolivia and Argentina, and the Wyoming thrustbelt).
Additional traps are located in fault-seal-dependent
footwall traps and sub-thrust autochthonous and para-
autochthonous strata beneath the leading edges of
thrustbelts.

Part IV also examines the worldwide distribution of
oil and gas resources and the interplay of factors in
thrustbelt settings to generate, entrap and preserve
hydrocarbons. Many thrustbelts host hydrocarbons. A
few are the site of world-class oil and gas accumula-
tions. About a dozen thrustbelts hold the lion’s share of
hydrocarbon resources within this habitat. The strong
asymmetry in the global distribution of hydrocarbon
reserves in thrustbelts is examined here.

There is good reason to believe that thrustbelts will be
productive sources of hydrocarbons well into the future.
The opportunities include pure frontier plays, but
extending exploration into less mature portions of
established petroleum provinces is a safer path. This
includes searching for deeper targets, smaller and
unconventional traps, and by-passed resources. Many
new technical tools are now available to assist in the dis-
covery of new oil and gas, or in the more efficient recov-
ery of known reserves. This book closes by pointing to
likely directions of continued hydrocarbon exploration
and development in thrustbelts. It seems clear that as
world consumption of, and thus demand for, hydrocar-
bons continues to rise (BP, 2004), the ‘real’ price of the
product will inevitable increase, thus funding the
advances in technology that will be required for explo-
ration and production of the future. We hope that this
book will serve as a useful companion for those involved
in this endeavour.
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PART ONE

Fundamentals of
Thrustbelts






For the purposes of this book the term ‘thrustbelt’ is
given a broad meaning to encompass any deformed belt
in which contractional or transpressional brittle and
brittle/ductile structural styles dominate over other
types of structures, including conventional thrustbelts,
transpressional ranges, toe thrusts and accretionary
prisms (Figs. 1.1-1.6, Tables 1.1-1.6).

Conventional thrustbelts

Conventional thrustbelts evolve out of either passive
margin or intracratonic rift systems and their consequent
sedimentary basins (Fig. 1.7). Examples of passive
margin sediments involved in a thrustbelt are seen in the
Appalachians, Andes or Alps. Examples of orogenic
belts evolved out of intracratonic rifts are the Atlas
Mountains, Palmyrides or the northern Andes. The rift
systems, whether of pure extensional or transtensional
origin, form the fundamental crustal weaknesses that
focus compressional stress and provide the volume of
rocks that subsequently become incorporated into the
thrustbelt. Nice examples of extensional and transten-
sional rifts later involved in thrusting come from the

Introduction to the topic
of thrustbelts

Urals. Their different geometries in relation to the direc-
tion of compression determined different structural
styles in different parts of the Urals. Passive margin
basins, with their broad post-rift sedimentary prisms
tapering out onto the nonrifted cratons favour ‘thin-skin’
structural styles in which the sedimentary cover strata are
detached and deformed independently of the underlying
basement (Fig. 1.8). Intracratonic rift systems, on the
other hand, tend to produce ‘thick-skin’, or basement-
involved thrustbelts in which inverted half-grabens or
uplifted basement blocks are a dominant feature (Figs.
1.9 and 1.10). However, the distinctions between thin-
and thick-skin thrustbelt styles are not rigid. Even in the
thin-skin variety, the basal thrust surfaces root within
displaced basement elements, many of which can be
demonstrated to have been older normal faults (Fig.
1.11). Elements of thin-skin styles are frequently encoun-
tered in inverted graben systems, especially where salt or
thick shale deposits flank the precursor intracratonic
basin. A nice example of the salt thickness controlling
thin-skin versus thick-skin structural style comes from
the inverted Broad Fourteens basin in the North Sea.

Fig. 1.1. Thrustbelt map of the North American continent. The topographic map is taken from Smith and Sandwell (1997).
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Fig. 1.2. Thrustbelt map of the South
American continent. The topographic
map is taken from Smith and Sandwell
(1997).
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Fig. 1.3. Thrustbelt map of Europe and adjoining North Africa. The topographic map is taken from Smith and Sandwell (1997).



Conventional thrustbelts

Fig. 1.4. Thrustbelt map of the African continent. The topographic map is taken from Smith and Sandwell (1997).

For a conventional thrustbelt to develop, basement
rocks must be shortened somewhere within the width of
the belt. In some instances, this involves partial restora-
tion of the extension accompanying rifting, resulting
in an inverted rift system (Fig. 1.9). In other cases
the shortening results in contractional translation of
the original rift elements for very large distances and the
generation of thin-skin structural styles where the
thrusts cut up into and displace thin slabs of the sedi-

mentary cover (Fig. 1.12). Many thrustbelts exhibit
both thin- and thick-skin structural styles in different
portions of the belt (Figs. 1.13a and b). Some, such as
the Andes, change style along strike (Fig. 1.13a;
Allmendinger et al., 1997), whereas others, such as the
US Cordillera-Rocky Mountains, exhibit thin-skin
styles in their interior and inverted basement styles in
their exterior (Fig. 1.13b; Hamilton, 1988), or vice-
versa.
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Fig. 1.6. Thrustbelt map of the
Australian continent. The topographic
map is taken from Smith and Sandwell
(1997).




