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Preface

Preface to the Second Edition

It has been eight years now since the appearance of the first edition of this book in 2001. During
this time, many courteous users—professors who have been adopting the book, researchers, and
students—have taken the time and care to provide me with valuable feedback about the book.
In preparing the second edition, I have taken into consideration the generous feedback I have
received from these users. To them, and from the very outset, [ want to express my deep sense
of gratitude and appreciation.

The underlying focus of the book has remained the same: to provide a well-structured and
self-contained, yet concise, text that is backed by a rich collection of fully solved examples
and problems illustrating various aspects of nonrelativistic quantum mechanics. The book is
intended to achieve a double aim: on the one hand, to provide instructors with a pedagogically
suitable teaching tool and, on the other, to help students not only master the underpinnings of
the theory but also become effective practitioners of quantum mechanics.

Although the overall structure and contents of the book have remained the same upon the
insistence of numerous users, | have carried out a number of streamlining, surgical type changes
in the second edition. These changes were aimed at fixing the weaknesses (such as typos)
detected in the first edition while reinforcing and improving on its strengths. I have introduced a
number of sections, new examples and problems, and new material; these are spread throughout
the text. Additionally, I have operated substantive revisions of the exercises at the end of the
chapters; I have added a number of new exercises, jettisoned some, and streamlined the rest.
I may underscore the fact that the collection of end-of-chapter exercises has been thoroughly
classroom tested for a number of years now.

The book has now a collection of almost six hundred examples, problems, and exercises.
Every chapter contains: (a) a number of solved examples each of which is designed to illustrate
a specific concept pertaining to a particular section within the chapter, (b) plenty of fully solved
problems (which come at the end of every chapter) that are generally comprehensive and, hence,
cover several concepts at once, and (c) an abundance of unsolved exercises intended for home-
work assignments. Through this rich collection of examples, problems, and exercises, I want
to empower the student to become an independent learner and an adept practitioner of quantum
mechanics. Being able to solve problems is an unfailing evidence of a real understanding of the
subject.

The second edition is backed by useful resources designed for instructors adopting the book
(please contact the author or Wiley to receive these free resources).

The material in this book is suitable for three semesters—a two-semester undergraduate
course and a one-semester graduate course. A pertinent question arises: How to actually use
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the book in an undergraduate or graduate course(s)? There is no simple answer to this ques-
tion as this depends on the background of the students and on the nature of the course(s) at
hand. First, [ want to underscore this important observation: As the book offers an abundance
of information, every instructor should certainly select the topics that will be most relevant
to her/his students; going systematically over all the sections of a particular chapter (notably
Chapter 2), one might run the risk of getting bogged down and, hence, ending up spending too
much time on technical topics. Instead, one should be highly selective. For instance, for a one-
semester course where the students have not taken modern physics before, I would recommend
to cover these topics: Sections 1.1-1.6; 2.2.2,224,2.3,24.1-24.8,2.5.1,2.53,2.6.1-2.6.2,
2.7,3.2-3.6;43-48;52-54,5.6-5.7; and 6.2-6.4. However, if the students have taken mod-
ern physics before, [ would skip Chapter 1 altogether and would deal with these sections: 2.2.2,
224,23,24.1-248,25.1,253,26.1-2.6.2, 2.7; 3.2-3.6, 43-4.8; 52-54, 5.6-5.7; 6.2
6.4;9.2.1-9.2.2, 9.3, and 9.4. For a two-semester course, I think the instructor has plenty of
time and flexibility to maneuver and select the topics that would be most suitable for her/his
students; in this case, I would certainly include some topics from Chapters 7-11 as well (but
not all sections of these chapters as this would be unrealistically time demanding). On the other
hand, for a one-semester graduate course, [ would cover topics such as Sections 1.7-1.8; 2.4.9,
2.6.3-2.6.5; 3.7-3.8; 4.9; and most topics of Chapters 7-11.

Acknowledgments
I have received very useful feedback from many users of the first edition; I am deeply grateful
and thankful to everyone of them. I would like to thank in particular Richard Lebed (Ari-
zona State University) who has worked selflessly and tirelessly to provide me with valuable
comments, corrections, and suggestions. [ want also to thank Jearl Walker (Cleveland State
University }—the author of The Flying Circus of Physics and of the Halliday—Resnick—Walker
classics, Fundamentals of Physics—for having read the manuscript and for his wise sugges-
tions; Milton Cha (University of Hawaii System) for having proofread the entire book; Felix
Chen (Powerwave Technologies, Santa Ana) for his reading of the first 6 chapters. My special
thanks are also due to the following courteous users/readers who have provided me with lists of
typos/errors they have detected in the first edition: Thomas Sayetta (East Carolina University),
Moritz Braun (University of South Africa, Pretoria), David Berkowitz (California State Univer-
sity at Northridge), John Douglas Hey (University of KwaZulu-Natal, Durban, South Africa),
Richard Arthur Dudley (University of Calgary, Canada), Andrea Durlo (founder of the A.LF.
(Italian Association for Physics Teaching), Ferrara, Italy), and Rick Miranda (Netherlands). My
deep sense of gratitude goes to M. Bulut (University of Alabama at Birmingham) and to Heiner
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solve the Schrodinger equation for a one-dimensional harmonic oscillator and for an infinite
square-well potential.

Finally, I want to thank my editors, Dr. Andy Slade, Celia Carden, and Alexandra Carrick,
for their consistent hard work and friendly support throughout the course of this project.

N. Zettili
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XV
Preface to the First Edition

Books on quantum mechanics can be grouped into two main categories: textbooks, where
the focus is on the formalism, and purely problem-solving books, where the emphasis is on
applications. While many fine textbooks on quantum mechanics exist, problem-solving books
are far fewer. It is not my intention to merely add a text to either of these two lists. My intention
is to combine the two formats into a single text which includes the ingredients of both a textbook
and a problem-solving book. Books in this format are practically nonexistent. [ have found this
idea particularly useful, for it gives the student easy and quick access not only to the essential
elements of the theory but also to its practical aspects in a unified setting.

During many years of teaching quantum mechanics, 1 have noticed that students generally
find it easier to learn its underlying ideas than to handle the practical aspects of the formalism.
Not knowing how to calculate and extract numbers out of the formalism, one misses the full
power and utility of the theory. Mastering the techniques of problem-solving is an essential part
of learning physics. To address this issue, the problems solved in this text are designed to teach
the student how to calculate. No real mastery of quantum mechanics can be achieved without
learning how to derive and calculate quantities.

In this book 1 want to achieve a double aim: to give a self-contained, yet concise, presenta-
tion of most issues of nonrelativistic quantum mechanics, and to offer a rich collection of fully
solved examples and problems. This unified format is not without cost. Size! Judicious care
has been exercised to achieve conciseness without compromising coherence and completeness.

This book is an outgrowth of undergraduate and graduate lecture notes | have been sup-
plying to my students for about one decade; the problems included have been culled from a
large collection of homework and exam exercises | have been assigning to the students. It is
intended for senior undergraduate and first-year graduate students. The material in this book
could be covered in three semesters: Chapters 1 to 5 (excluding Section 3.7) in a one-semester
undergraduate course; Chapter 6, Section 7.3, Chapter 8, Section 9.2 (excluding fine structure
and the anomalous Zeeman effect), and Sections 11.1 to 11.3 in the second semester; and the
rest of the book in a one-semester graduate course.

The book begins with the experimental basis of quantum mechanics, where we look at
those atomic and subatomic phenomena which confirm the failure of classical physics at the
microscopic scale and establish the need for a new approach. Then come the mathematical
tools of quantum mechanics such as linear spaces, operator algebra, matrix mechanics, and
eigenvalue problems; all these are treated by means of Dirac’s bra-ket notation. After that we
discuss the formal foundations of quantum mechanics and then deal with the exact solutions
of the Schrodinger equation when applied to one-dimensional and three-dimensional problems.
We then look at the stationary and the time-dependent approximation methods and, finally,
present the theory of scattering.

I would like to thank Professors Ismail Zahed (University of New York at Stony Brook)
and Gerry O. Sullivan (University College Dublin, Ireland) for their meticulous reading and
comments on an early draft of the manuscript. I am grateful to the four anonymous reviewers
who provided insightful comments and suggestions. Special thanks go to my editor, Dr Andy
Slade, for his constant support, encouragement, and efficient supervision of this project.

I want to acknowledge the hospitality of the Center for Theoretical Physics of MIT, Cam-

bridge, for the two years I spent there as a visitor. I would like to thank in particular Professors
Alan Guth, Robert Jaffee, and John Negele for their support.
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Note to the student

We are what we repeatedly do. Excellence, then, is not an act, but a habit.

Aristotle

No one expects to learn swimming without getting wet. Nor does anyone expect to learn
it by merely reading books or by watching others swim. Swimming cannot be learned without
practice. There is absolutely no substitute for throwing yourself into water and training for
weeks, or even months, till the exercise becomes a smooth reflex.

Similarly, physics cannot be learned passively. Without tackling various challenging prob-
lems, the student has no other way of testing the quality of his or her understanding of the
subject. Here is where the student gains the sense of satisfaction and involvement produced by
a genuine understanding of the underlying principles. The ability to solve problems is the best
proof of mastering the subject. As in swimming, the more you solve problems, the more you
sharpen and fine-tune your problem-solving skills.

To derive full benefit from the examples and problems solved in the text, avoid consulting
the solution too early. If you cannot solve the problem after your first attempt, try again! If
you look up the solution only after several attempts, it will remain etched in your mind for a
long time. But if you manage to solve the problem on your own, you should still compare your
solution with the book’s solution. You might find a shorter or more elegant approach.

One important observation: as the book is laden with a rich collection of fully solved ex-
amples and problems, one should absolutely avoid the temptation of memorizing the various
techniques and solutions; instead, one should focus on understanding the concepts and the un-
derpinnings of the formalism involved. It is not my intention in this book to teach the student a
number of tricks or techniques for acquiring good grades in quantum mechanics classes without
genuine understanding or mastery of the subject; that is, I didn’t mean to teach the student how
to pass quantum mechanics exams without a deep and lasting understanding. However, the stu-
dent who focuses on understanding the underlying foundations of the subject and on reinforcing
that by solving numerous problems and thoroughly understanding them will doubtlessly achieve
a double aim: reaping good grades as well as obtaining a sound and long-lasting education.

N. Zettili
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Chapter 1

Origins of Quantum Physics

In this chapter we are going to review the main physical ideas and experimental facts that
defied classical physics and led to the birth of quantum mechanics. The introduction of quan-
tum mechanics was prompted by the failure of classical physics in explaining a number of
microphysical phenomena that were observed at the end of the nineteenth and early twentieth
centuries.

1.1 Historical Note

At the end of the nineteenth century, physics consisted essentially of classical mechanics, the
theory of electromagnetism', and thermodynamics. Classical mechanics was used to predict
the dynamics of material bodies, and Maxwell’s electromagnetism provided the proper frame-
work to study radiation; matter and radiation were described in terms of particles and waves,
respectively. As for the interactions between matter and radiation, they were well explained
by the Lorentz force or by thermodynamics. The overwhelming success of classical physics—
classical mechanics, classical theory of electromagnetism, and thermodynamics—made people
believe that the ultimate description of nature had been achieved. It seemed that all known
physical phenomena could be explained within the framework of the general theories of matter
and radiation.

At the turn of the twentieth century, however, classical physics, which had been quite unas-
sailable, was seriously challenged on two major fronts:

e Relativistic domain: Einstein’s 1905 theory of relativity showed that the validity of
Newtonian mechanics ceases at very high speeds (i.c., at speeds comparable to that of
light).

e Microscopic domain: As soon as new experimental techniques were developed to the
point of probing atomic and subatomic structures, it turned out that classical physics fails
miserably in providing the proper explanation for several newly discovered phenomena.
It thus became evident that the validity of classical physics ceases at the microscopic
level and that new concepts had to be invoked to describe, for instance, the structure of
atoms and molecules and how light interacts with them.

"Maxwell’s theory of electromagnetism had unified the. then ostensibly different, three branches of physics: elec-
tricity, magnetism, and optics.
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The failure of classical physics to explain several microscopic phenomena—such as black-
body radiation, the photoelectric effect, atomic stability, and atomic spectroscopy—had cleared
the way for seeking new ideas outside its purview.

The first real breakthrough came in 1900 when Max Planck introduced the concept of the
quantum of energy. In his efforts to explain the phenomenon of blackbody radiation, he suc-
ceeded in reproducing the experimental results only after postulating that the energy exchange
between radiation and its surroundings takes place in discrete, or quantized, amounts. He ar-
gued that the energy exchange between an electromagnetic wave of frequency v and matter
occurs only in integer multiples of hv, which he called the energy of a quantum, where h is a
fundamental constant called Planck’s constant. The quantization of electromagnetic radiation
turned out to be an idea with far-reaching consequences.

Planck’s idea. which gave an accurate explanation of blackbody radiation, prompted new
thinking and triggered an avalanche of new discoveries that yielded solutions to the most out-
standing problems of the time.

In 1905 Einstein provided a powerful consolidation to Planck’s quantum concept. In trying
to understand the photoelectric effect, Einstein recognized that Planck’s idea of the quantization
of the electromagnetic waves must be valid for /ight as well. So, following Planck’s approach,
he posited that light itself is made of discrete bits of energy (or tiny particles), called photons,
cach of energy /v, v being the frequency of the light. The introduction of the photon concept
enabled Einstein to give an elegantly accurate explanation to the photoelectric problem, which
had been waiting for a solution ever since its first experimental observation by Hertz in 1887.

Another seminal breakthrough was due to Niels Bohr. Right after Rutherford’s experimental
discovery of the atomic nucleus in 1911, and combining Rutherford’s atomic model. Planck’s
quantum concept, and Einstein’s photons, Bohr introduced in 1913 his model of the hydrogen
atom. In this work, he argued that atoms can be found only in discrete states ot energy and
that the interaction of atoms with radiation, i.c., the emission or absorption of radiation by
atoms, takes place only in discrete amounts of hv because it results from transitions of the atom
between its various discrete energy states. This work provided a satisfactory explanation to
several outstanding problems such as atomic stability and atomic spectroscopy.

Then in 1923 Compton made an important discovery that gave the most conclusive confir-
mation for the corpuscular aspect of light. By scattering X-rays with electrons, he confirmed
that the X-ray photons behave like particles with momenta /v /¢ v is the frequency of the
X-rays.

This series of breakthroughs—due to Planck, Einstein, Bohr, and Compton—gave both
the theoretical foundations as well as the conclusive experimental confirmation for the particle
aspect of waves; that is, the concept that waves exhibit particle behavior at the microscopic
scale. At this scale, classical physics fails not only quantitatively but even qualitatively and
conceptually.

As if things were not bad enough for classical physics, de Broglie introduced in 1923 an-
other powerful new concept that classical physics could not reconcile: he postulated that not
only does radiation exhibit particle-like behavior but, conversely, material particles themselves
display wave-like behavior. This concept was confirmed experimentally in 1927 by Davisson
and Germer; they showed that interference patterns, a property of waves, can be obtained with
material particles such as electrons.

Although Bohr’s model for the atom produced results that agree well with experimental
spectroscopy, it was criticized for lacking the ingredients of a theory. Like the “quantization™
scheme introduced by Planck in 1900, the postulates and assumptions adopted by Bohrin 1913



