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ANNOTATED INSTRUCTOR'S EDITION

To the Instructor

This, the Annotated Instructor’s Edition, is intended as an additional teaching
resource, particularly for the less experienced instructor.

This edition contains a number of marginal annotations (in red). The
content and purpose of the annotations is quite variable. Some warn of pos-
sible student misinterpretations, some indicate ideas that deserve special or
careful treatment, a few provide historical or other background information.

At the end of each section, this edition also provides a list of rec-
ommended problems. Indeed, there is a list of recommended odd-numbered
problems (if you want the answer in the back of the book to be available
to the students) and a list of recommended even-numbered problems (for
which no answers appear in the text). The problems have been selected on
the basis of covering the material of the section, providing a mix of drill
and less routine problems, and avoiding problems that are too challenging.
In many cases, the more interesting and more challenging problems are also
indicated.

In addition to the annotated text, this Instructor’s Edition includes
opening essays on the following topics:

. Calculus, Computing, and Writing.
. Calculus: A Computer Laboratory.

W N

. Calculators: From Square Roots to Chaos.
4. Computers and Calculus (use of a graphics software package).
5. Calculus: A Core Course.

We hope that these essays will be of particular interest to instructors who
are interested in reshaping the calculus curriculum, and in the possible use
of calculators and computers in the teaching of calculus.

CH.E.Jr / D.EP.

Aix
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Calculus, Computing, and Writing

Thirty-five years ago this fall I enrolled as a first-quarter freshman intending
to major in engineering. In those days every college student took a one-year
freshman English composition course featuring weekly themes that were
graded quite savagely. This was followed by a year-long sophomore literature
course in which weekly themes were again the principal mode of student
expression.

In addition, I and my fellow engineering students that first fall quarter
took a required course called “Engineering Problems” in which we learned
how to operate a slide rule, how to check systematically the accuracy of our
simple algebra and arithmetic, how to keep track of dimensions and cancel
units correctly, and how to write a laboratory report explaining in plain
English how our experiment had (or had not) worked. With a modern calcu-
lator in place of the slide rule, these are precisely the things—never mind
the finer points of precalculus mathematics—that I would like all of my cal-
culus students to have learned somewhere before appearing in my class.

I need not belabor the inferior preparation of today’s students as com-
pared with that of the students in those halcyon days when we ourselves sat
on the other side of the lectern. Each of us has a pet suggestion as to the
first corrective action that should be taken. But perhaps one could do worse
than require that each student come to the campus for a pre-college summer
quarter studying nothing but the same engineering problems text I studied
in 1954: F. C. Dana and L. R. Hillyard, Engineering Problems Manual, fourth
edition, New York: McGraw-Hill, 1947. There is probably a message in the
fact that this fine text (first published in 1927) is no longer in print. Reading
it in 1989, one is struck by the timelessness of such bits of wisdom as

= “The average student wastes much time and effort and gets lower grades
than he should because of inaccuracy in figuring” and “the habit of
[careless | inaccuracy saps confidence and leads to future difficulties”
(page 7).

= Prominent among “time wasters are the formula worshipers. .. who
spend more time hunting a magic formula than they would need to
analyze the problem piece by piece using simple familiar methods and
calculations” (page 9).

= “There is a close connection between slovenly thinkers and slovenly
[writing]”, and a close correlation between the appearance of the paper
and the mental habits of the writer (page 11).

= The person “who resents difficulties, the quitter, the whiner, the leaner,
the bluffer, gravitates sooner or later to a less demanding way [than
engineering ] of making a living” (page 13).

= “The ancient art of ‘apple polishing’, sometimes known by other names,
is one that is sadly neglected in these modern times; . .. it is a way of
getting acquainted with teachers” (page 20).

= (Under the heading “How to flunk out.”) “It cannot be said too often
that the ability to understand and solve problems does not come by
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memorizing formulas . . . Formulas are not substitutes for thought, nor
can they be used safely by blindly substituting data assumed to fit
them” (page 27).

« “Do not make fine, faint, gray marks. They are sufficient reason for
complete rejection of a paper by the checker even though the paper is
otherwise acceptable . .. Bear down on the pencil . .. Do not scribble
... Keep papers clean...Avoid crowding... Watch your spelling”
(pages 46—-49).

= “Use horizontal-bar fractions to show division”. Inclined-bar fractions
cause too many blunders (page 55).

= “To drop significant figures without good reason is a blunder that
reduces the precision of the result. To record a string of doubtful fig-
ures beyond those justified is downright dishonesty” (page 130).

= “A working knowledge of the right triangle is of vital importance” (page
146).

= “The two principal operations [ of calculus | are complementary . . . One
is finding the rate of change of some variable; the other is determining
the total change ... Throughout the entire subject of calculus the
student is really working with differential equations” (page 193).

Of course the book as a whole is more substantial and less moralistic than
this arbitrary selection of quotes may suggest. But where can today’s students
find such still-needed advice so plainly stated? Certainly not in modern main-
stream textbooks! My suggestion of a pre-college summer quarter prep course
will surely go uniformly unheeded. So where in today’s curricula can such
instruction possibly find a place?

I happened upon an unexpected answer this past year when I set out
to include a computer lab as a year-long feature of my calculus course. The
daily homework I customarily assign was replaced with two- or three-week
computer projects. Each project consisted of a collection of related problems
with a common theme (such as Newton’s method or Simpson’s rule) for stu-
dents to investigate in the computer lab, and then to organize their results
in a written report. The very first project consisted of several problems like
the following one, intended both for review of high school geometry and for
familiarization with the computer and some simple programs that were
provided:

A 100-ft tree stands 20 feet from a 10-ft fence. Then the tree is “broken”
at a height of x feet, so that it just grazes the top of the fence and
touches the ground (on the other side of the fence) with its tip. Apply
the Pythagorean theorem and the proportionality of corresponding
sides in similar triangles to show that x satisfies the equation

x* — 68x? + 1100x — 5000 = 0.
Then use the tabulation and bisection programs to find the possible

value(s) of the distance x accurate to 4 decimal places.
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[The cubic equation above has three positive real solutions, but only two
of them are the desired “possible values™.]

The instructions for each project included the following sort of general
directions.

Write a mini-report describing your work on each problem. First explain
in your own words the mathematical background to your numerical
work. Then tell precisely what you did with a computer and how it
worked out. Use complete sentences written in plain English. Recount
both your failures and your successes, and describe any particular
anguish or joy you experienced. Insert relevant computer results at
appropriate spots in your narrative, carefully selecting the number of
decimal places for the computer to print so as to highlight your results
and conclusions.

As the work on each project progressed, I invited class discussion of
issues raised both by their computer lab work and by their attempts to de-
scribe it in their reports. The students’ questions brought to light a number
of ground-level topics that are vital for numerical work in mathematics, but
which seem not to fit in the standard calculus curriculum—accuracy and
significant digits, dimensions and units, etc. I was prompted to deal more
than previously with matters of good mathematical taste; for instance, why
it might be good to show 6 decimal places if you're interested in 4-place ac-
curacy, but not to show 16 places if 10 of them are meaningless (however
willing is the computer to mindlessly print them out). In this way the project
report emphasis served to flesh out the course and add a concrete dimension
that often is missing from classroom mathematics.

As opposed to the mathematical and computational components, the
writing component of this activity played a much more substantive role than
I had anticipated. The “explain the mathematical background” direction
seemed to call for conventional exposition, but the students were surprised
by my insistence that they really explain their reasoning in complete (English
language) sentences, and by my refusal to accept the typical student mathe-
matics paper consisting solely of unexplained equations and computations.
Perhaps some of them understood for the first time that an equation is not
just an inert collection of marks on paper, but is itself a sentence that makes
an assertion, whose meaning may well depend upon the context (which there-
fore must be made clear). Some clearly were shocked by my emphatically
stated belief in a positive correlation between the orderly appearence of the
paper and the orderly thought of the writer. I myself gained a new apprecia-
tion of the phrase “writing to learn mathematics” (though those of us who
write mathematics books are perhaps the most notorious practioners of the
principle). For a more systematic discussion of this’concept and its implica-
tions, see George D. Gopen and David A. Smith, “What’s an Assignment
Like You Doing in a Course Like This?: Writing to Learn Mathematics”,
The College Mathematics Journal; to appear.

My instructions were deliberately evocative, but I was surprised that
they stimulated a degree of student fluency that I have never before seen in
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student mathematics papers. Students are uncertain how to write well about
mathematics (perhaps because they’ve seen so many examples of bad writing
in their mathematics textbooks) but the direction to “tell what you did with
the computer” called for them to describe their own experiences, and on a
higher cognitive level than telling “what you did during summer vacation”.

Students like to talk (and even to write) about themselves, and with
the proper motivation can be quite loquacious. And though they doubt the
usefulness of the perennial summer vacation theme, most can readily perceive
the usefulness of learning to describe computer work—thus a new twist to
the ageless question of what all this is good for!

The instruction to “recount both your failures and your successes” is
particularly important. It seems to students that standard mathematical ex-
position deals solely with what “works”, even though why it works may
never be made clear (at least to them). A new concern with what does not
work—and why it doesn’t, and hence what might be tried instead—brings
students closer to real mathematics than most of them have ever been before.

Much of the most eloquent writing came under the heading of “joy
and anguish”. Many students reported occasional feelings of antagonism
toward the computer, and often described its refusal to cooperate in quite
anthromorphic terms. One student insisted that his computer would not per-
form properly unless sworn at most viciously. Another described the exilara-
tion he felt when his series summation program finally worked and produced
correct sines and cosines—at that instant he exchanged winks with the pre-
viously inert portrait of Isaac Newton hanging on his dormitory room wall.

As the year progressed, I learned a few more tricks for inviting the feel-
ing of active personal involvement on the part of the students. A third-quarter
project on the 2-dimensional Newton’s method included the following
problem.

You land in your space ship on a spherical asteroid. Your partner
walks 1000 feet away along the smooth surface carrying a 10 ft rod,
and thereby vanishes over the horizon. When she places one end on
the ground and holds the rod straight up and down, you (lying on
your stomach to rest from the arduous journey from Earth) can just
barely see the tip of the rod. First determine the radius of the asteroid.
Then determine, if you have enough spring in your legs to jump 4 feet
high on Earth, how high could you jump on this asteroid. Assume that
the earth is a sphere with radius 3960 miles having the same uniform
density as the asteroid.

Several students took the bait and described in fanciful detail what had
happened in the course of their “arduous journey from Earth”, and why they
consequently were so tired when they finally arrived on this lonely asteroid.
One even cast his report largely in the form of a dialogue between himself
and his “partner” (not unlike Galileo and Simplicio). Perhaps it is pertinent
that this last student, who earned the class’s top grade on this particular
project, had begun the year terribly concerned about merely passing the re-
quired calculus course, describing himself as having always had trouble with
mathematics.

Axiv Calculus, Computing, and Writing
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In the end, I surely had learned no less than the students had. I had
begun the year with the intent of including a certain sequence of computer
topics as described in the manual Calculus: PC Companion (Prentice Hall,
1990). I ended with the view that, however interesting some of us may find
computing in calculus, it’s greater importance may lie in the fact that it pro-
vides a natural vehicle for “writing to learn mathematics” on the part of
those many students who cannot (and probably should not) get this experi-
ence by writing theorems and proofs. I now realize that this was the primary
benefit (and very likely the purpose) of those laboratory reports I labored
to write back in engineering school. Some of the best and oldest lessons must
be relearned continually, not only by our students, but also by we who have
known them before.

C.H.E, Jr.

Calculus: A Computer Laboratory

In the calculus “core course” I taught last year the usual daily homework
assignments were replaced with computer projects that constituted (from a
grading standpoint) one-third of the course. For each assigned project the
students had two to three weeks to do the necessary computer work and to
write up their results in the style of a “lab report”. The book

C. H. Edwards, Jr., Calculus: PC Companion,
Englewood Cliffs, N.J.: Prentice Hall, 1990

is the result of my efforts during the past several years to develop source
material for use in such projects.

This manual consists of nineteen computer “lessons” that span the com-
putational highlights of introductory calculus, from functions and graphs
through infinite series and elementary differential equations. In addition, four
supplementary “interludes” show how a combination of computational power
and the elementary concepts of calculus leads to such exciting applications
as fractals and the Mandelbrot set.

Using Computers in Calculus

The goal of the manual is to encourage the use of computing to enliven the
teaching of calculus. It can be used either

. As a computer supplement to a standard calculus course, or as the
manual for a computer laboratory associated with such a course;

2. As the text for an experimental course on calculus with computing; or
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3. For individual study by calculus students who are interested in
computing.

However, it is specifically designed as a “computer supplement” that students
can use in a standard calculus course, with as little or as much explicit in-
volvement and supervision as the instructor may care to provide. Each lesson
is constructed in such a way that a student should be able to work through
it routinely, seated at a personal computer with the manual open.

Consequently, an organized official “computer laboratory” need not
be associated with the course. On many campuses, personal computer clus-
ters are distributed about the campus and are available for student use on
a walk-in basis. In this setting computer assignments—ranging from daily
homework to three-week projects—can be given, with the students expected
to go forth on their own to find computers and to complete the work. The
problem sets are intended to include ample material on which to base such
assignments.

To Program or Not to Program?

Instead of writing their own programs, students following this manual will
use the BASIC programs that are included on the MS-DOS diskette that
accompanies the manual. Therefore no prior knowledge of programming is
assumed. Lesson 1 begins by telling the student how to start from scratch
by loading BASIC, and an appendix presents a brief BASIC tutorial for
those who want or need it.

Most of the programs on the disk are listed in the manual itself. They
are an integral part of the exposition, and hence are designed as much to
be read and appreciated as to be used and enjoyed. In seeing how we instruct
the computer to “do calculus,” students learn how to do it themselves.

This approach is based on the principle that some sort of active student
participation in computer work is required if learning is to take place. Con-
sequently each program in the manual requires the student user to “do some-
thing” before and/or during its execution—if only to edit the line of the pro-
gram that defines the function f(x) for which Newton’s method is to be
applied to solve the equation f(x) = 0, and to “press any key” to see another
iteration. By slightly altering existing programs so as to obtain desired re-
sults—perhaps only to change the number of decimal places displayed—even
those students with no previous computing experience will gradually absorb
the quite modest BASIC literacy that is needed. With this approach, I have
found the question of student programming to be a non-issue, and the con-
scious teaching of programming to be (thankfully) quite unnecessary.

Nevertheless, I have much in common with those who feel that the
mathematical benefits of computing are maximized if and when students can
program for themselves the numerical algorithms of calculus. With an ap-
propriate class, an enticing possibility would be the translation by students
of our BASIC programs into nicely structured Turbo Pascal (especially if
they’ve had advanced placement computer science) or into another dialect
of BASIC, perhaps True BASIC or QuickBASIC for the Macintosh.

Axvi Calculus: A Computer Laboratory



ANNOTATED INSTRUCTOR'S EDITION ;

Range of Topics

The contents of the manual are indicated by the list of lesson titles:

LESSON 1: Algorithms, BASIC, and Computing

LESSON 2: Tabulation of Functions and Solution of Equations
LESSON 3: Bisection and Interpolation

LESSON 4: Graphs of Functions and Equations

LESSON 5: Tteration and Sequences

INTERLUDE: Successive Substitutions and the Mandelbrot Set
LESSON 6: Sequences and the Limit Concept

LESSON 7: Limits of Functions

LESSON 8: Numerical Differentiation

LESSON 9: Newton’s Method

LESSON 10: Maximum-minimum Problems

INTERLUDE: Newton’s Method and Computer Graphics
LESSON 11: Riemann Sums and Numerical Integration
LESSON 12: The Trapezoidal Approximation

LESSON 13: Simpson’s Approximation

LESSON 14: Summation of Infinite Series

LESSON 15: Power Series and Transcendental Functions
INTERLUDE: Extrapolation, Archimedes, and Getting Something for Nothing
LESSON 16: Parametric Curves

LESSON 17: Partial Derivatives and Newton’s Method

LESSON 18: Critical Points in Two Dimensions

LESSON 19: Differential Equations and Euler Methods
FINALE: Bounded Populations, Iteration, and Chaos

Beginning with Lesson 6 the sequence of topics parallels (roughly) those
in a “core calculus” course—Ilimits, derivatives, Newton’s method, maxi-
mum-minimum problems, numerical integration, infinite series, multivari-
able calculus, and differential equations. But perhaps the first five lessons
need some comment. Lesson 1 is a low-key introduction to computing and
the idea of a computational algorithm. Lesson 2 on tabulation of functions
and the solution of equations gives students a more concrete and numerical
familiarity with the function concept than most calculus students begin with.
Lesson 3 on bisection and interpolation introduces the idea of iteration that
plays a central role in automated computing. Lesson 4 introduces the student
to function-graphing programs that are available on their diskette, and which
can be used to solve equations visually by “zoom” techniques. Lesson 5 on
iteration and sequences introduces the concept of convergence in the natural
case of a sequence of approximations to the solution of an equation.

Thus limits of sequences appear earlier and more tangibly than limits
of functions in a computer approach to calculus. Limits of sequences are
treated more generally in Lesson 6. This leads naturally to limits of functions
and to derivatives in Lessons 7 and 8, and thereafter the order of topics is
similar to a standard calculus course.

Each block of five lessons is followed by an “interlude” of optional
material that may be used for supplementary reading and as a source of in-
spiration for students who are especially computer-oriented. For instance,
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the first interlude shows how the iteration x,,,; = g(x,) with the inocuous-
looking function g(x) = x? + ¢ leads to the fantastic Mandelbrot set, and the
second interlude shows how an investigation of the mundane-appearing “cork
ball equation” (Lesson 2) leads to fractals and the idea of chaos.

Requirements

In regard to hardware and software, students are assumed to have access to
MS-DOS (that is, IBM-compatible) personal computers, together with the
Microsoft BASIC that is generally available (either formally or informally)
in computer labs on most campuses. The program listings and illustrative
numerical results included in this manual have been produced with both
IBM and compatible non-IBM personal computers, and were photocopied
directly so as to avoid the possibility of printing errors.

I attempt throughout to reinforce classroom learning of calculus by
including reasonably complete discussions and alternative explanations of
the calculus concepts that are used and illustrated in the manual. This manual
and its predecessor Calculus and the Personal Computer (Prentice-Hall, 1986)
provide a record of my attempts to bring the power and excitement of per-
sonal computing to bear on the development of a livelier calculus course.
This is a continuing effort, and I invite student and faculty comments and
suggestions.

C.H.E, Jr.

Calculators: from Square Roots to Chaos

Our teaching of mathematics should reflect the current revolution in the role
and practice of mathematics in the world around us. This revolution is driven
largely by computational technology. The computational power now offered
by calculators and computers encourages a concrete problem-solving ap-
proach that emphasizes the formulation of mathematical models and the
solution of equations. It permits the inclusion of realistic applications that
otherwise would be impractical because of the amount of numerical calcu-
lation involved. Perhaps most vital is the way computational experiences
can transform students from passive spectators to active participants in the
mathematical experience. In this note we illustrate this theme with some cal-
culator examples that can be employed to exhibit the vitality of contempo-
rary mathematics as a living subject.

Consider first the problem of approximating the square root of a num-
ber A, for which we all learned in school a dreary and long-forgotten paper
and pencil method. Of course our calculator has a square root key, but how
does the calculator do it? More to the point, how can we solve the equation

f)=x*-A4=0 (1)

to find the numerical value of its solution x = \/4? We would like our stu-
dents to recognize instantly that the question simply is: Where does the curve
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y = f(x) cross the x-axis? But with one of the newer graphics calculators
(such as the Casio fx-7000G) we can quickly plot this curve and note (for
instance) which consecutive integer interval contains its intersection with the
(positive) x-axis. Moreover, we can use “zoom” techniques to look at succes-
sive magnifications of this intersection and thereby actually “eyeball” the
solution, with each magnification by a factor of 10 producing an additional
decimal place of accuracy.

Alternatively, we might employ the ancient Babylonian averaging

iteration
1 A
=— Sy 2
Xn+1 2<xn+x"> (2)

to start with an initial guess x, and generate a sequence X, X,, X3, ... of
closer and closer approximations to the number /4. This introduces the
general idea of solving numerically an equation of the form f(x) =0 by
writing it in the special form x = g(x) that suggests an appropriate iteration.
Equations (1) and (2) illustrate this idea with

1 A
f(x)=x*—A4=0 and x=g(x)=2<x+x> (3)
Even so simple an interation as the one in (1) can be tedious using
paper and pencil alone, but a calculator with a single programmable func-
tion key will make short work of it. For instance, suppose that in order to

find ﬁ, we program this function key to take the entered number x, then
calculate and display the value of the function g(x) = (x + 2/x)/2. If we first
enter the number 2 itself as an initial guess, then press our g key five times,
we see the numbers 1.500000, 1.416667, 1.414216, 1.414214, 1.414214 appear
successively in the display, thus telling us that ﬁ ~x 1.414214 accurate to 6
decimal places.

Some quite inexpensive scientific calculators now sport function keys,
but with a graphics calculator like the Casio with a “replay” feature, we
needn’t even to program a function key. If we simply enter the lines

25X and (X +2/X)/X > X

and then press the Execute key five times in succession, we get the display

2 X

2. 000000
(X + 2/X)/2>X

1. 500000
. 416667
414216
414214
414214

o

Starting with the number 2 in the x-memory (as a crude initial guess), the
current value of x is replaced by the Babylonian average (x + 2/x)/2 with
each press of the Execute key, thereby carrying out our iteration in especially
painless fashion.
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Merely finding square roots as the Babylonians did (though without
graphics calculators) 2000 years ago is scarcely revolutionary. But the itera-
tive approach of Equation (2) leads to tools with which students can attack
successfully a wide variety of interesting and important problems, and can
even lead to exciting developments near the frontiers of contemporary
mathematics.

Consider, for instance, a cork ball of radius 1 ft and specific gravity
1 floating in water. We ask for the depth x to which the ball sinks. Using
the Pythagorean theorem and a volume formula of Archimedes, it turns out
(see Example 2 in Section 3.9) that x satisfies the cubic equation

fx)=x3=3x2+1=0. 4)

The quadratic formula that students memorized in high school is no help,
but we want them to learn that a modern calculator enables them to solve
(virtually) any equation. For instance, if their calculator has a programmable
function key, then they can quickly calculate sufficiently many values of f(x)
to spot sign changes in the intervals (— 1, 0), (0, 1), and (2, 3). Of course the
physical situation which (4) models shows that the solution in (0, 1) is the
one we seek.

Once we have the desired solution bracketed, the Solve key on a cal-
culator like the Hewlett-Packard 28S will quickly give us an accurate 10-digit
approximation to the actual root. Alternatively, after several magnifications
with a Casio (or the similar Sharp EL-5200) we see (literally) that the graph
crosses the x-axis very near the point x =~ 0.6527, so the ball sinks in the
water to a depth of about

(0.6527 ft)(12 in/ft) ~ 8 inches.

But this particular result is only the beginning of the story. Newton
generalized Babylonian iteration to apply to essentially any equation f(x) = 0.
Given f(x), Newton’s method (Section 3.9) tells how to make a propitious
choice of a function g(x) so that, starting with an appropriate initial guess
X, the iteration

Xps1 = g(X) )

leads rapidly to a solution of f(x) = 0. For the cubic equation in (4) the itera-
tion function of Newton’s method is

S o x*=3x7+1

fi(x) X 3x? — 6x (©)

g(x) = x —

Once we know the proper interation function g(x), we can start with an
initial guess x, and generate the sequence x,, x,, X3, . . . of (hopefully) closer
and closer approximations to a solution by plowing each new x, back into
g(x) to calculate the next approximation x, , ,. For instance, with g(x) defined
as in (6), the different initial guesses — 1, + 1, and + 3 lead to the three differ-
ent (approximate) solutions —0.5321, 0.6527, and 2.8794 of the cork ball
equation in (4).

Once we know Newton’s method and therefore can find an effective
iteration function g(x) to use, we can just as easily solve (virtually) any equa-
tion f(x) = 0 by iterative evaluation of g(x), starting with a plausible initial
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guess. Armed with this tool, a teacher can present real problems, and need
never again stoop to inquiring about the width of the foot-path around the
flower garden.

A combination of the numerical and graphical methods that have been
mentioned can be employed to place a healthy emphasis on problem-solving
by interactive investigation rather than the use of inflexible rote methods.
These techniques are ideal for inculcating the spirit of inquiry that is central
to real mathematics, but too often is missing from the mathematics classroom.
For instance, given an iteration function g(x), we can ask what happens when
different initial guesses x, are used to “seed” the iteration. Students can be
led to discover for themselves that 3 different initial guesses that are arbitarily
close together can lead to the three different real solutions of the cork ball
equation in (4). For instance,

=« the initial guess x, = 1.648 yields the root  0.6527;
« the initial guess x, = 1.649 yields the root  2.8794;
= the initial guess x, = 1.650 yields the root —0.5321.

In particular, these three different initial guesses yield the following Casio
fx-7000G displays:

1.648>X 1.649 =X 1.650 > X
1.6480 1.6490 1. 6500

X- (XX X-3X-X+1 X-(X-XX-3XX+1 X-(XXX-3XX+1
) /(3 X-X-6-X) >X ) /(3 X-X-6-X) > 1 ) /(3 X-X-6-X) > 1
0.1127 0.1092 0.1058

1.6227 1.6675 1.7156

0.1927 0.0414 ~0.1839

1.0499 4.1344 -0.9245

0. 6658 3. 3642 ~0. 6343

0. 6528 2.9922 -0. 5421

0. 6527 2.8878 -0. 5322

0.6527 2.8794 0. 5321

0. 6527 2.8794 ~0. 5321

The initial guesses are close together, but the solutions they yield are not!
Thus the solution obtained by iteration appears to depend unpredictably or
“chaotically” upon the initial guess. This, of course, is the phenomenon of
chaos that is so prominent in contemporary science and mathematics. If we
keep an appropriate pictorial record showing in different colors the particu-
lar solutions obtained for a wide variety of different initial guesses, we ulti-
mately see a fractal on the screen that reveals the order underlying the chaos.
For further details see Interlude B of C. H. Edwards, Jr., Calculus: PC Com-
panion, Englewood Cliffs, N.J.: Prentice Hall, 1990.

One can forget about solving equations, and simply ask what happens
with the iterates produced by the iteration (5) with a given function g(x).
Each new function g(x) provides the basis for a possible new student “research”
project. For instance, consider the simple function

g(x) = kx(1 — x) (™)
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(with k a given constant). Ask a student with a Casio calculator to enter the
commands

2.5-X-(1-X)~>X

corresponding to x, = 3 and k = 2.5, then press the Execute key ten or twenty
times to see that x, — 0.6. Then suggest trying it again, first with k = 3.25
and next with k = 3.5. (In the former case the nth iterate x, will oscillate be-
tween two distinct values, and in the latter it will cycle among four distinct
values!) For the rest of the story—period doubling and all that—see the
Finale to Calculus Companion: The PC.
Finally, suggest that students explore iterates of the lowly looking
function
g(x)=x*+c¢ (8)

with different values of the constant ¢ (starting with initial value x, = 0 in
each case). The question is how the sequence {x,} of iterates obtained depends
upon the chosen value ¢. Numerical experimentation with

0-X
X-X+C~=X

will show that the sequence of iterates appears for some values of ¢ (such as
¢=0.1 and ¢ = —0.5) to “settle down” and approach a definite limiting
value, while for others (such as ¢ = 1 and ¢ = —3) it appears to “diverge to
infinity”—that is, the value x, seems to get larger and larger without any
limit. To discover the pattern as to which values of ¢ are which, it is necessary
to experiment (if you have a computer or an HP-28S) with complex as well
as real values of x and ¢. The stunning color pictures of Mandelbrot sets
seen in glossy magazines and books (such as H. O. Peitgen and P. H. Richter,
The Beauty of Fractals, New York: Springer-Verlag, 1986) are produced by
coloring different c-points with different colors, depending on the speed with
which the resulting sequence of iterates diverges to infinity. For a detailed
description and a simple BASIC program that produces a passable (black-
and-white) Mandelbrot set, see Interlude A of Calculus Companion: The PC.
The Mandelbrot set can even be generated and printed using the HP-28S; see
pages 337-339 of W. C. Wickes, HP-28 Insights, Corvallis, Oregon: Larken
Publications, 1988.

C.H.E., Jr.
Computers and Calculus

Using computers as a teaching aid for calculus has been evolving for the
past ten years. The advent of the microcomputer and, more recently, the
data tablet for overhead projection have made in-class use of computers very
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attractive. Most software has dealt with the graphical aspects of calculus,
but modeling, simulation and computer algebra are areas of rapidly increasing
activity. Computer graphics is typical of computer classroom use, and this
discussion will concentrate on how good, fast graphics capability can be used
effectively in a calculus course, and how the course is changed by this tool.
The graphics softwai. package EPIC,,,[1] will be used as a concrete exam-
ple of such capability.

Software features assumed for this discussion include the ability to
input any function, including multiple section functions, graph the function,
superimpose graphs of several different functions, draw the graph of the first
and second derivatives, draw tangent lines and secant lines, illustrate regions
of integration, and draw graphs of polar and parametric equations. A “zoom”
feature is extremely useful and the user must have control of the “graphics
window”—that is, the intervals along the x and y axes in which the graph
is drawn. The software must be easy to use.

Classroom use of computers generally falls into one of three categories:
(1) planned demonstrations, (2) spontaneous demonstrations, and (3) student
activities. (Each category will be fully discussed in following paragraphs.)
The term Planned Demonstrations is used to describe instructor-given pre-
sentations prepared before class. In class, the computer graphics output is
displayed on a large screen via overhead projection while the instructor dis-
cusses important features. Spontaneous Demonstrations refer to the use of a
computer as an aid to answer a student question as soon as it is asked. This
assumes a computer is always available during class. Student Activities des-
cribes students performing investigative work with directed computer use.
This requires student access to a computer, and consequently may be “lab”
activity. These classroom activities can be combined with homework assign-
ments designed to be worked with a computer.

The examples discussed below are generally computer implementations
of teaching methods utilized by most mathematics instructors. That is, the
computer software has been designed to mimic instructor activity to a small
degree. The computer provides speed, accuracy and impartiality. It does not
teach, but it may answer student questions, if the student is able to phrase
the question properly.

An important question to answer before describing computer-related
classroom activities is why use the computer at all. If it can do only what a
well-prepared instructor can do, why make the effort to incorporate com-
puters? From the author’s viewpoint, there are at least four separate aspects
to the answer. The first part of the answer lies with the key words of the
previous paragraph: speed, accuracy and impartiality. Computers can draw
graphs very quickly, seldom make an error, and eliminate the subtle step of
requiring the student to believe the instructor has not made an error! A sec-
ond component to the answer is the animation ability of computers. For
example, many calculus questions involve limits, which intrinsically contain
changing quantities. Often an illuminating presentation of these changes can
be provided by some sort of animation. The third ingredient to the answer
to the question of why use computers is that the computer is instrumental
in making students active rather than passive learners. Its rapid response
time encourages students to test ideas and methods, rather than wait for the
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