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Introduction to Coding Theory

Error-correcting codes constitute one of the key ingredients in achieving the high
degree of reliability required in modern data transmission and storage systems. This
book introduces the reader to the theoretical foundations of error-correcting codes,
with an emphasis on Reed—Solomon codes and their derivative codes.

After reviewing linear codes and finite fields, the author describes Reed—Solomon
codes and various decoding algorithms. Cyclic codes are presented, as are MDS
codes, graph codes, and codes in the Lee metric. Concatenated, trellis, and convo-
lutional codes are also discussed in detail. Homework exercises introduce additional
concepts such as Reed-Muller codes, and burst error correction. The end-of-chapter
notes often deal with algorithmic issues, such as the time complexity of computa-
tional problems.

While mathematical rigor is maintained, the text is designed to be accessible to
a broad readership, including students of computer science, electrical engineering,
and mathematics, from senior-undergraduate to graduate level.

This book contains over 100 worked examples and over 340 exercises—many
with hints.

RoN M. ROTH joined the faculty of Technion—1Israel Institute of Technology (Haifa,
Israel) in 1988, where he is a Professor of Computer Science and holds the General
Yaakov Dori Chair in Engineering. He also held visiting positions at IBM Research
Division (San Jose, California) and, since 1993, at Hewlett—Packard Laboratories
(Palo Alto, California). He is a Fellow of the Institute of Electrical and Electronics
Engineers (IEEE).



Preface

Do ye imagine to reprove words?
Job 6:26

This book has evolved from lecture notes that I have been using for an in-
troductory course on coding theory in the Computer Science Department at
Technion. The course deals with the basics of the theory of error-correcting
codes, and is intended for students in the graduate and upper-undergraduate
levels from Computer Science, Electrical Engineering, and Mathematics.
The material of this course is covered by the first eight chapters of this
book, excluding Sections 4.4-4.7 and 6.7. Prior knowledge in probability,
linear algebra, modern algebra, and discrete mathematics is assumed. On
the other hand, all the required material on finite fields is an integral part of
the course. The remaining parts of this book can form the basis of a second,
advanced-level course.

There are many textbooks on the subject of error-correcting codes, some
of which are listed next: Berlekamp [36], Blahut [46], Blake and Mullin [49)],
Lin and Costello [230], MacWilliams and Sloane [249], McEliece [259], Pe-
terson and Weldon [278], and Pless [280]. These are excellent sources, which
served as very useful references when compiling this book. The two volumes
of the Handbook of Coding Theory [281] form an extensive encyclopedic col-
lection of what is known in the area of coding theory.

One feature that probably distinguishes this book from most other clas-
sical textbooks on coding theory is that generalized Reed-Solomon (GRS)
codes are treated before BCH codes—and even before cyclic codes. The
purpose of this was to bring the reader to see, as early as possible, families
of codes that cover a wide range of minimum distances. In fact, the cyclic
properties of (conventional) Reed-Solomon codes are immaterial for their
distance properties and may only obscure the underlying principles of the
decoding algorithms of these codes. Furthermore, bit-error-correcting codes,
such as binary BCH codes, are found primarily in spatial communication
applications, while readers are now increasingly exposed to temporal com-

ix
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munication platforms, such as magnetic and optical storage media. And in
those applications—including domestic CD and DVD—the use of GRS codes
prevails.

Therefore, the treatment of finite fields in this book is split, where the
first batch of properties (in Chapter 3) is aimed at laying the basic back-
ground on finite fields that is sufficient to define GRS codes and understand
their decoding algorithm. A second batch of properties of finite fields is
provided in Chapter 7, prior to discussing cyclic codes, and only then is the
reader presented with the notions of minimal polynomials and cyclotomic
cosets.

Combinatorial bounds on the parameters of codes are treated mainly in
Chapter 4. In an introductory course, it would suffice to include only the
Singleton and sphere-packing bounds (and possibly the non-asymptotic ver-
sion of the Gilbert—Varshamov bound). The remaining parts of this chapter
contain the asymptotic versions of the combinatorial bounds, yet also cover
the information-theoretic bounds, namely, the Shannon Coding Theorem
and Converse Coding Theorem for the g-ary symmetric channel. The latter
topics may be deferred to an advanced-level course.

GRS codes and alternant codes constitute the center pillar of this book,
and a great portion of the text is devoted to their study. These codes are
formally introduced in Chapter 5, following brief previews in Sections 3.8
and 4.1. Classical methods for GRS decoding are described in Chapter 6,
whereas Chapter 9 is devoted to the list decoding of GRS codes and alternant
codes. The performance of these codes as Lee-metric codes is then the main
topic of Chapter 10. GRS codes play a significant role also in Chapter 11,
which deals with MDS codes.

The last three chapters of the book focus on compound constructions of
codes. Concatenated codes and expander-based codes (which are, in a way,
two related topics) are presented in Chapters 12 and 13, and an introduction
to trellis codes and convolutional codes is given in Chapter 14. This last
chapter was included in this book for the sake of an attempt for completeness:
knowing that the scope of the book could not possibly allow it to touch all the
aspects of trellis codes and convolutional codes, the model of state-dependent
coding, which these codes represent, was still too important to be omitted.

Each chapter ends with problems and notes, which occupy on average
a significant portion of the chapter. Many of the problems introduce ad-
ditional concepts that are not covered in text; these include Reed—Muller
codes, product codes and array codes, burst error correction, interleaving,
the implementation of arithmetic in finite fields, or certain bounds—e.g., the
Griesmer and Plotkin bounds. The notes provide pointers to references and
further reading. Since the text is intended also for readers who are computer
scientists, the notes often contain algorithmic issues, such as the time com-
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plexity of certain computational problems that are related to the discussion
in the text.

Finally, the Appendix (including the problems therein) contains a short
summary of several terms from modern algebra and discrete mathematics, as
these terms are frequently used in the book. This appendix is meant merely
to recapitulate material, which the reader is assumed to be rather familiar
with from prior studies.

I would like to thank the many students and colleagues, whose input on
earlier versions of this book greatly helped in improving the presentation.
Special thanks are due to Shirley Halevy, Ronny Lempel, Gitit Ruckenstein,
and Ido Tal, who taught the course with me at Technion and offered a
wide variety of useful ideas while the book was being written. Ido was
particularly helpful in detecting and correcting many of the errors in earlier
drafts of the text (obviously, the responsibility for all remaining errors is
totally mine). I owe thanks to Brian Marcus and Gadiel Seroussi for the good
advice that they provided along the way, and to Gadiel, Vitaly Skachek, and
the anonymous reviewers for the constructive comments and suggestions.
Part of the book was written while I was visiting the Information Theory
Research Group at Hewlett—Packard Laboratories in Palo Alto, California.
I wish to thank the Labs for their kind hospitality, and the group members
in particular for offering a very encouraging and stimulating environment.
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Chapter 1

Introduction

In this chapter, we introduce the model of a communication system, as orig-
inally proposed by Claude E. Shannon in 1948. We will then focus on the
channel portion of the system and define the concept of a probabilistic chan-
nel, along with models of an encoder and a decoder for the channel. As our
primary example of a probabilistic channel-—here, as well as in subsequent
chapters—we will introduce the memoryless g-ary symmetric channel, with
the binary case as the prevailing instance used in many practical applica-
tions. For ¢ = 2 (the binary case), we quote two key results in information
theory. The first result is a coding theorem, which states that information
through the channel can be transmitted with an arbitrarily small probabil-
ity of decoding error, as long as the transmission rate is below a quantity
referred to as the capacity of the channel. The second result is a converse
coding theorem, which states that operating at rates above the capacity
necessarily implies unreliable transmission.

In the remaining part of the chapter, we shift to a combinatorial setting
and characterize error events that can occur in channels such as the g-ary
symmetric channel, and can always be corrected by suitably selected en-
coders and decoders. We exhibit the trade-off between error correction and
error detection: while an error-detecting decoder provides less information
to the receiver, it allows us to handle twice as many errors. In this context,
we will become acquainted with the erasure channel, in which the decoder
has access to partial information about the error events, namely, the loca-
tion of the symbols that might be in error. We demonstrate that—here as
well—such information allows us to double the number of correctable errors.

1.1 Communication systems

Figure 1.1 shows a communication system for transmitting information from
a source to a destination through a channel. The communication can be
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- Source | Channel ‘
Source Encoder Encoder \
Channel
o Source Channel ‘_J
Destination [ Decoder | Decoder

Figure 1.1. Communication system.

either in the space domain (i.e., from one location to another) or in the time
domain (i.e., by storing data at one point in time and retrieving it some time
later).

The role of source coding is twofold. First, it serves as a translator
between the output of the source and the input to the channel. For example,
the information that is transmitted from the source to the destination may
consist of analog signals, while the channel may expect to receive digital
input; in such a case, an analog-to-digital conversion will be required at
the encoding stage, and then a back conversion is required at the decoding
stage. Secondly, the source encoder may compress the output of the source
for the purpose of economizing on the length of the transmission; at the
other end, the source decoder decompresses the received signal or sequence.
Some applications require that the decoder restore the data so that it is
identical to the original, in which case we say that the compression is lossless.
Other applications, such as most audio and image transmissions, allow some
(controlled) difference—or distortion—between the original and the restored
data, and this flexibility is exploited to achieve higher compression; the
compression is then called lossy.

Due to physical and engineering limitations, channels are not perfect:
their output may differ from their input because of noise or manufacturing
defects. Furthermore, sometimes the design requires that the format of the
data at the output of the channel (e.g., the set of signals that can be read
at the output) should differ from the input format. In addition, there are
applications, such as magnetic and optical mass storage media, where cer-
tain patterns are not allowed to appear in the recorded (ie., transmitted)
bit stream. The main role of channel coding is to overcome such limitations
and to make the channel as transparent as possible from the source and
destination points of view. The task of signal translation, which was men-
tioned earlier in the context of source coding, may be undertaken partially
(or wholly) also by the channel encoder and decoder.
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1.2 Channel coding

We will concentrate on the channel coding part of Figure 1.1, as shown in
Figure 1.2.

Channel Channel
u Encoder ¢ 7| Chennel y | Decoder

o>
[=3

Figure 1.2. Channel coding.

Our model of the channel will be that of the (discrete) probabilistic chan-
nel: a probabilistic channel S is defined as a triple (F, ®, Prob), where F' is a
finite input alphabet, ® is a finite output alphabet, and Prob is a conditional
probability distribution

Prob{ y received | x transmitted }

defined for every pair (x,y) € F™ x ®™ where m ranges over all positive
integers and F™ (respectively, ®™) denotes the set of all words of length
m over F' (respectively, over ®). (We assume here that the channel neither
deletes nor inserts symbols; that is, the length of an output word y always
equals the length of the respective input word x.)

The input to the channel encoder is an information word (or message) u
out of M possible information words (see Figure 1.2). The channel encoder
generates a codeword ¢ € F™ that is input to the channel. The resulting
output of the channel is a received word y € ®", which is fed into the
channel decoder. The decoder, in turn, produces a decoded codeword ¢ and
a decoded information word u, with the aim of having ¢ = ¢ and u = 1.
This implies that the channel encoder needs to be such that the mapping
u — c is one-to-one.

The rate of the channel encoder is defined as

lo M
R=SFT
n

If all information words have the same length over F, then this length is
given by the numerator, log| | M, in the expression for R (strictly speaking,
we need to round up the numerator in order to obtain that length; however,
this integer effect phases out once we aggregate over a sequence of ¢ —
0o transmissions, in which case the number of possible information words
becomes M* and the codeword length is £ - n). Since the mapping of the
encoder is one-to-one, we have R < 1.

The encoder and decoder parts in Figure 1.2 will be the subject of Sec-
tions 1.3 and 1.4, respectively. We next present two (related) examples of
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probabilistic channels, which are very frequently found in practical applica-
tions.

Example 1.1 The memoryless binary symmetric channel (in short,
BSC) is defined as follows. The input and output alphabets are F' = & =
{0,1}, and for every two binary words x = z125. ..z, and Y =Y1Y2...Ynm
of a given length m,

Prob{y received | x transmitted }
m

= H Prob{ y; received | z; transmitted } , (1.1)
j=1

where, for every z,y € F,

l—-p ify==z

Prob{ y was received | z was transmitted } = { P if 5

The parameter p is a real number in the range 0 < p < 1 and is called the
crossover probability of the channel.

The action of the BSC can be described as flipping each input bit with
probability p, independently of the past or the future (the adjective “memo-
ryless” reflects this independence). The channel is called “symmetric” since
the probability of the flip is the same regardless of whether the input is 0 or
1. The BSC is commonly represented by a diagram as shown in Figure 1.3.
The possible input values appear to the left and the possible output values
are shown to the right. The label of a given edge from input z to output Y
is the conditional probability of receiving the output y given that the input
is x.

o
P
Y

® ()

le —e |

1—p7

Figure 1.3. Binary symmetric channel.

The casesp = 0andp = 1 correspond to reliable communication, whereas
p = % stands for the case where the output of the channel is statistically

independent of its input. J

Example 1.2 The memoryless q-ary symmetric channel with crossover
probability p is a generalization of the BSC to alphabets F' = ® of size q. The
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conditional probability (1.1) now holds for every two words x = 122 ...Zn
and y = y1y2 . . . Yym over F', where

1-— RTye=n
Prob{ y was received | z was transmitted } = { p/(q—pl) ifz .

(While the term “crossover” is fully justified only in the binary case, we will
nevertheless use it for the general g-ary case as well.) UJ

In the case where the input alphabet F' has the same (finite) size as the
output alphabet ®, it will be convenient to assume that F' = ® and that the
elements of I form a finite Abelian group (indeed, for every positive integer g
there is an Abelian group of size g, e.g., the ring Z, of integer residues modulo
g; see Problem A.21 in the Appendix). We then say that the channel is an
additive channel. Given an additive channel, let x and y be input and output
words, respectively, both in F™. The error word is defined as the difference
y—x, where the subtraction is taken component by component. The action of
the channel can be described as adding (component by component) an error
word e € F™ to the input word x to produce the output word y = x + e,
as shown in Figure 1.4. In general, the distribution of the error word e may
depend on the input x. The g-ary symmetric channel is an example of a
channel where e is statistically independent of x (in such cases, the term
additive noise is sometimes used for the error word e).

x—»?——»yx—l—e

e

Figure 1.4. Additive channel.

When F'is an Abelian group, it contains the zero (or unit) element. The
error locations are the indexes of the nonzero entries in the error word e.
Those entries are referred to as the error values.

1.3 Block codes

An (n, M) (block) code over a finite alphabet F is a nonempty subset C of
size M of F™. The parameter n is called the code length and M is the code
size. The dimension (or information length) of C is defined by k = log|p M,
and the rate of C is R = k/n. The range of the mapping defined by the
channel encoder in Figure 1.2 forms an (n, M) code, and this is the context
in which the term (n, M) code will be used. The elements of a code are
called codewords.
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In addition to the length and the size of a code, we will be interested
in the sequel also in quantifying how much the codewords in the code differ
from one another. To this end, we will make use of the following definitions.

Let F be an alphabet. The Hamming distance between two words x,y €
F™ is the number of coordinates on which x and y differ. We denote the
Hamming distance by d(x,y).

It is easy to verify that the Hamming distance satisfies the following
properties of a metric for every three words x,y,z € F™:

¢ d(x,y) > 0, with equality if and only if x = y.
e Symmetry: d(x,y) = d(y, x).
e The triangle inequality: d(x,y) < d(x,z) + d(z,y).

Let F be an Abelian group. The Hamming weight of e € F™ is the
number of nonzero entries in e. We denote the Hamming weight by w(e).
Notice that for every two words x,y € F™,

d(x,y) =w(y —x).

Turning now back to block codes, let C be an (n, M ) code over F with
M > 1. The minimum distance of C is the minimum Hamming distance
between any two distinct codewords of C; that is, the minimum distance d
is given by

d= min d(cy,co) .
c1,c2€C: c1#co ( b 2)

An (n, M) code with minimum distance d is called an (n,M,d) code (when
we specify the minimum distance d of an (n, M ) code, we implicitly indicate
that M > 1). We will sometimes use the notation d(C) for the minimum
distance of a given code C.

Example 1.3 The binary (3,2, 3) repetition code is the code
{000, 111}

over F' = {0,1}. The dimension of the code is logo2 = 1 and its rate
is 1/3. U]

Example 1.4 The binary (3,4,2) parity code is the code
{000,011, 101, 110}

over F' = {0,1}. The dimension is log, 4 = 2 and the code rate is 2/3. O



