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Preface

The role of econometrics is to bring together economic theory, statistical
methods, and observed data. One way of doing so is via regression. In
this context, one of the overriding preoccupations of econometricians
is finding the right specification of their regression model. The simple
reason for doing so is that bad model specifications increase the risk of
drawing the wrong conclusions from the analysis of data, with all of the
negative side-effects that this would imply.

Standard econometric textbooks set out the properties of various esti-
mators for different specifications of regression models. It is very com-
monly supposed in these presentations that the form of the relationship
linking the dependent to the explanatory variables is known, and that
the regression model is correctly specified: we are here in the world
of parametric regression models, both linear and non-linear. However,
the retained specification may be very dissimilar to the real underlying
relationship in certain cases. The appeal of non-parametric and semi-
parametric methods is that they relax the specification constraint: no
a priori relationship is imposed between the explanatory and the depen-
dent variables. In the context of the search for the best specification,
these methods have brought new information to the debate, and have
caused established regression specifications to be questioned in a number
of empirical domains.

Recent developments in non- and semi-parametric estimation have
opened up a wide vista of empirical applications across all the domains
in which econometrics is applied: Macroeconomics, Microeconomics,
Finance, and so on. These new methods can equally be applied to all of
the different types of data used by researchers: cross-section, time-series,
panel, and qualitative. The goal of this book is to present these new empir-
ical tools so as to encourage their wider use in empirical applications.

Chapter 1 starts by setting out the principles of the estimation of a
density. Chapters 2, 3, and 4 cover the simplest of the regression cases,
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with one dependent variable and one explanatory variable. These chap-
ters describe the different methods of non-parametric estimation: ker-
nel, splines, and wavelets. However, most empirical applications include
a number of explanatory variables. Chapter 5 acknowledges this real-
ity, and describes the estimation of semi-parametric regressions. Finally,
mixture models are presented in Chapter 6. These introduce unob-
served heterogeneity into the estimation of both densities and regression
models. Sections marked % are more technical and can be skipped if
required.

This book sets out to be a pedagogical piece of work, illustrated by
a number of original applications of the techniques at hand. We par-
ticularly emphasize the understanding of the methods, the underlying
intuition, and how these techniques can be applied in practice. Each
chapter includes a certain number of concrete applications of the methods
described, as a way of illustrating them and of underlining both the
advantages of these new techniques and their limitations. The applica-
tions described cover a wide variety of economic topics: economic con-
vergence, income inequality, earnings, the Phillips curve, interest rates,
financial markets, inflation, and house prices. An appendix describes how
to apply these methods using statistical software. The reader can then
reproduce the results in the applications described in this book using the
original data.

This book is aimed at advanced undergraduate and graduate students in
Economics, Business and Statistics, academic and non-academic readers,
and researchers and analysts who use econometrics in firms and public
organizations.

We have benefitted enormously from the advice and comments of a
number of colleagues while writing this book. In particular, we thank
Jean-Marc Bardet, Luc Bauwens, Philippe Bertrand, Russell Davidson,
Véronique Delouille, Alain Desdoigts, Jean-Pierre Florens, Philippe Joli-
valdt, Hubert Kempf, Mohamad Khaled, Michel Lubrano, Olivier Niinez,
Anne Péguin-Feissolle, Véronique Simonnet, Antoine Terracol, and the
editors Jurgen Doornik and Bronwyn Hall. The students in the Non-
parametric Econometrics course at the University of Paris 1 Panthéon-
Sorbonne also played a crucial part in the development of this work. We
are very grateful to them. We are particularly grateful to Andrew Clark,
who translated this book into English and, with relevant remarks, largely
contributed to improving its quality and readability. We also thank the
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Centre d’Economie de la Sorbonne and the Région Provence-Alpes-Cote
d’Azur for financial support.

Those who, unbeknownst to them, contributed the most to this book
are our families and our children. They provided us with both the desire
and the opportunity to carry out our work. This book is dedicated to them:
to Muriel, Haris, and Adam, and to Valérie, Rémi, and Tom.
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1

Kernel Density Estimation

1.1 Introduction

Has the gap in wealth between rich and poor countries narrowed or
widened over time? Is investment in shares risky? How does the tax sys-
tem affect the distribution of income between households? A preliminary
analysis of the distribution of the variable of interest is often extremely
useful to address this kind of question. The probability density function
is a fundamental concept in statistics, providing a natural description of a
variable’s distribution. The analysis of this density clearly reveals certain
properties of the variable in question, and yields information that is very
likely useful in guiding and deepening the empirical analysis. This chapter
is mainly devoted to the estimation of this density function from a data
sample and its analysis.

Figure 1.1 shows the estimated density function of GDP per capita in
121 countries across the world in 1988. The data here come from the Penn
World Table of Summers and Heston (1991), and have been divided by the
mean of GDP per capita over all countries. On the X-axis, the value of 1/2
corresponds to one-half of the world mean of GDP per head, and the value
2 corresponds to twice the world mean. If we consider GDP per head to be
a useful measure of a country’s wealth, this figure allows us to analyze the
world distribution of income. One of the first things that we note is that
the density function is bimodal. The existence of two modes suggests that
there are two distinct groups: one composed of the “richest” countries,
and another consisting of the “poorest”. The second mode is much less
pronounced than the first, which indicates that the two groups are not
of the same size: there are relatively few “rich” countries, and distinctly
more “poor” countries. Further, the first mode is located just to the left of
the value 0.5 on the X-axis, while the second is found at around 3. We can
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Figure 1.1: Kernel density estimation of the world distribution of income

thus conclude from this figure that, on average in 1988, “rich” countries
enjoyed a level of GDP per capita that was around three times the world
average, whereas that of “poor” countries was only half of the average
level. We can also carry out a dynamic analysis by taking into account data
from different years. For example, the same figure using data from 1960
reveals that the distance between the two modes was larger in 1988 than
in 1960: the gap between the two groups of countries seems to have grown
over time. The in-depth analysis in Quah (1997) considers the question of
convergence between groups, but also the persistence of the gap, and the
mobility of countries between different groups since the 1960s.

Figure 1.2 presents the estimated density function of daily returns of
the CAC 40, the French stock market index, between March 1, 1990 and
September 27, 2006. For comparison purposes, we have overlaid a Nor-
mal distribution (the dotted line). This distribution of financial returns
is Leptokurtic: compared to the Normal distribution, the peak is more
pointed and the extremities are thicker. As such, the probabilities at the
extremes and in the middle of the distribution are greater than those in
the Normal distribution. This shape is commonly observed in data from
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Figure 1.2: Kernel density estimation of daily returns in the CAC 40

financial markets, where extreme movements are more common than the
Normal distribution would predict. This is one of the reasons for which
ARCH (AutoRegressive Conditional Heteroskedasticity) regression models
are often used in finance: the predicted returns from ARCH models are
often Leptokurtic.

Figure 1.3 depicts the distribution of household gross and net income,
that is, before and after taxes, in 1998 (equivalent income in 1000 Italian
Lire). Both income measures are expressed in logarithms. In this figure,
there is no very clear difference between the form of the two density
functions: a simple shift would appear to suffice to move from one density
function to the other. A shift in a logarithmic scale corresponds to a
percentage change in the variable of interest. As such, the horizontal
displacement that is evident in Figure 1.3 reveals a multiplicative effect
on the distribution of income (of x%). In other words, the tax system
in Italy affects the concentration of income distribution (the location of
log-income distribution) but has no impact on the shape of the income
distribution across the population. The tax system thus seems to deduct
the same proportion of income from all households (Fiorio, 2008).
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Figure 1.3: Kernel density estimation of Italian household incomes

All of the conclusions from the three examples above could have been
reached by other means; however, the estimated density function is an
ideal tool for the illustration of the properties of the data at hand, as it
is easily understood by non-statisticians. The estimation of the density
functions in the examples above was carried out by kernel methods with
an automatic choice of the smoothing parameter. The following sections
present this non-parametric density estimation method, and describe its
statistical properties. More information is available in Silverman (1986),
as well as Hardle (1989), Scott (1992), Wand and Jones (1995), Simonoff
(1996), Bowman and Azzalini (1997), and Pagan and Ullah (1999).

Section 1.2 presents the standard methods for the estimation of a
density, and Section 1.3 the Kernel estimation methods. The choice of
the smoothing parameter is addressed in Section 1.4, and adaptive Kernel
methods are described in Section 1.5. Finally, Section 1.6 considers the
case of multivariate analysis.



Standard Density Estimation Methods

1.2 Standard Density Estimation Methods

First of all, we restate the definition of a probability density function. If
we say that a random variable Y has a probability density function of f,
this means that for any real values a and b, the probability that Y falls
between a and b is:

b
P(a<Y<b)=/ f(y)dy foranya <b.

The function f has the following properties: it takes only non-negative
values, it is integrable, and its integral from —oo to +oo is equal to 1.
If we have available a sample of data, which we suppose to have come
from an unknown density function, then the calculation of the estimated
density function will appeal only to the observed data to hand. A number
of different approaches are then possible. In this section, we consider
the parametric estimation of this density function and the estimation by
histogram, which are very often used in practice.

1.2.1 Parametric Estimation

If the density function is known up to k parameters, written as f(y; 6), the
estimation of the density boils down to estimating the vector 6, which
consists of k unknown parameters. This is the parametric approach, which
requires the prior specification of a family of distributions from which the
data sample is supposed to have been obtained.

Consider, for example, that we have a sample of n observations,
Vis ooy yn, Obtained from a Normal distribution, with mean x and variance
o%. The density function of the Normal distribution N(u, ¢%), evaluated at
x, is given by:

) _ 1 (x — w)?
f(xl,u'v 0)" g\/z; exp (— 20_2 )

The estimation of the density function is equivalent to obtaining esti-
mates of the parameters . and ¢ using the sample of data. One classic
method consists in specifying the joint density of the sample and calcu-
lating the parameter values which maximize this function. In other words,
we choose the parameters which maximize the likelihood of observing the
actual values in the data sample. This is the method of Maximum Likeli-
hood. If the observations are independently and identically distributed,



Kernel Density Estimation

the joint density function of yi,...,y, is equal to the product of the
individual densities:

fiw o) =[] fisn o).

i=1

The estimation of the density therefore requires the maximization of this
function with respect to the parameters u and . It is simpler to maximize
the logarithmic transformation of this function, called the log-likelihood:

€y p o) =1og f(yip. 0) = Y_10g f(yi; . o).

i=1

This is the sum of the individual log-densities. The solution of the two
maximizations is identical, as the logarithmic transformation is positive
and monotonic, but the analytical resolution of the log transformation
is much simpler. In our case, with a family of Normal distributions, the
parameter values which maximize the log-likelihood are the mean and
the variance of our data sample. Different examples can be presented
with different probability distributions. The resolution of the problem
may then be more complicated, but the same principle applies for other
families of parametric distributions.

The main drawback of this approach is that we have to suppose the
data are drawn from a given family of distributions f. If this hypothesis
does not hold, then the estimated density function can differ substantially
from its real value. For example, the estimated Normal distribution in
Figure 1.2 is obtained from a parametric estimation of the density under
the a priori hypothesis that the data were indeed distributed normally.
This curve is markedly different from that which results from a non-
parametric estimation, which latter reveals a pronounced Leptokurtic
distribution. Here, the hypothesis underlying the parametric estimation
seems very strong, and ignores one of the notable properties of financial
markets.

The advantage of non-parametric estimation is that it makes no such
a priori hypotheses regarding the form of the density function. As such,
it is much more flexible than the parametric approach. Non-parametric
estimation lets the data themselves determine the shape of the density,
without constraining the function to belong to any particular family of
distributions.



