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FOREWNORD

The following pages contain, in revised form, a set
of lectures given at Fine Hall in Princeton, New Jersey,
during the fall of 1945. A large part of the matter pre-
sented 1s the product of studies undertaken jointly by -
the author and Dr. Maurice Heins, refenence to which is
given in the bibliography. The first chapter on pseudo-
harmonic functions is, however, derived largely from the
author's paper on "The topology of pseudo-harmonic func-
tiona" Morse (1), while the fourth chapter on "The gehsr-
al order theorem" contains the first published proof. of
the theorem there stated. The present exposition differs
from that in the joint papers, Iin that in the earlier
papers attention was focused on meromorphic functions and
the proofs then amended to include interior transforms-
tions. (See Stoilow (1), and Whyburn for previous work
on interior transformations. With Whyburn our transform-
ations are interior and "light".) In these lectures
pseudo-harmonic functions and interior transformations
are the starting point,and the theorems specilalize into
theorems on harmonic functions and meromorphic transform-
ations. v

The modern theory of meromorphic functiofs has aia~
tinguished itself by the fruitful use of the instruments
of modern analysis and in particular by its use of the
theories of integration. TIts success along this 1ine has
perhaps dlverted its attentlon from some of the more
finitary and geometric aspects of function theory. His=

torically the geometric concepts of Riemann and Schwartz
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contrast with the more arithmetical concepts of Weler-
strass and of the modern school%® The present lectures
seek to emphasize agaln the advantages of geometric
methods as a complement of other methods.

In the study of boundary values in a statistical
sense, significant‘finite topological properties of the
boundary images have been passed'over, and the geometric
instrumepts appropriate for simple generalization not
always used. Passing to non-finitary aspects of the
theory, the critical points of a harmonic function on a
Jordan regilon, if infinite in number, stand in group
theoretic or topological relation to the boundary values,
assumed continuous, which arithmetic methods are not ade-
quate to reveal. See Morse and Heins (1) III. On turn-
ing in still another direction of the theory, the topol-
ogical development of pseudo-harmonic functions on the
basis of the topological characteristics of their contour
1ines, makes the theory avallable, as Stefan Bergmann has
pointed out, for the study of problems 1n partial differ-
ential equations not otherwlse reached.

However, 1t is not these negatlve aspects which are
most important but rather the possibility of attack on
new problems of a fundamental nature. One of these prob-
lems 1s the determination of properties of deformation
classes of}meromorphic\functions with prescribed zeros,
poles and branch points. See Morse and Helns (2). Here
a comnection is made between the interest of the topolog-
ist in homotopy theories, and the classical interest in
theorems on normal families, or covering theorems of the
Picard type.

These lectures form merely the beginning of studies
of thts type. It is hoped that they may strike a respon-
sive ¢hord in the hearts of those to whom there 1s an
appeal in the geometric approach.

#The remarkable work of lLars Ahlfors should be excepted.
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CHAPTER I
ESEUDO-HARMONIC FUNCTIONS

§1. Introduction.

We shall consider meromorphic functions F(z) on a
region G (open) bounded by v Jordan curves

(3} (B, ..., B,) = (B).

We shall suppose that F(z) is defined on G (the closure
of @), and 1s analytic on G except for poles,and contin-
uous at poilnts of (B). The number of poles of F(z) on G
1s necessarily finite. -

Alongside of F(z) we shall consider interior trans-
formations w = f(z) of G into the w-sphere. Such trans-
formations are generalizations of meromorphic functions.
To define such a transformation one begins with a defini-
tion of an interior transformation in the neighborhood of
an arbitrary point z, of G. BSuppose that F(t) is a non-
constant, analytic function defined on a neighborhood N
of ty- One subjects N to a 1 - 1 continuous sense-pre-
serving transformation

(1.2) t=6(z) (to = &(z4))
which maps N onto a neighborhood N1 of z o+ The function

(1.3) F(é(z)) = £(z2)
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thereby defined on N, 1s called an interior transforma-
tionw = f(z) of N1 into the w-sphere. A transformation
w = f(z) defined on G will be termed an interior trans-
formation of G if w = f(z) 1s an interior transformation
of some nelghborhood of each point of G. N
We shall admit the possibility that F(t) have a
pole at ty and then say that f(z) in (1.3) is an interior
transformation with a pole at Zy. We shall consider in-
turior transformations with at most a finite number of
poles on G, and suppose'that f(z) is defined on G and comr
tinuous at points of (B). We do not say that f(z) 1s an
interior transformation on the boundary (B), although it
is clear that f(z) might in certain cases be extended in
definition so as to be an interlor transformation of a
neighborhood of each boundary point.
We add an example of an interior transformation.
Let F(t) be an arbitrary polynomial in t. Set z =
X + 1y. Replace t in F(t) by

t=2x + 1y = &(z).

The resulting function F(é(z)) = f(z) will be interior
but not analytic.

Interior transformations have been introduced at the
very begimning not because they are our principal object
of study but because they furnish a convenient medium for
1llustrating the new topological methods. The zeros,
poles, and branch points of f(z) are a fundamental source
of study in the classical theory of functions. What are
the relatlons between thelr numbers under given boundary
conditions? To what extent do they determine the meromor—
phic function either with or without a knowledge of the
boundary values? Theorems of this type have been given by
Radé, Stollow, Walsh, Backlund, ILucas and others. Pos-
8ibly the simplest of these theorems is that of Iucas,
as follows. If P{(z) 1s any polynomial in z, the zeros of
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P'(z) are found in any convex region which contains the
zeros of P(z). Many of the theorems of the above authors
have thelr gemeralizations for interior transformations.

We have referred to branch points. It 1s necessary
to give this term a meaning in the case of interior trans-
formations. As 1s well known, a non-constant meromorphic
function f(z) if restricted to a sufficiently small
nelighborhood of a point z,, tekes on every value w in a
sufficiently small neighborhood of Wy = f(zo) an integral
number of times m, w, alone excepted. If m » 1, the in-
verse of f(z) is said to have a branch point of order
m - 1 at the point Wi With the neighborhood of Z, re-
stricted as above, f(z) defines a meromorphic element
Any interior transformation obtained from a meromorphic
element by a homeomorphic change of independent variable
will be called an interior element. The totality of
function values w remains unaltered. The neighborhood of
W, is covered the same number m of times by the interior
element as by the defining meromorphie element It is
therefore appropriate to say that the interior sleme:nt
defines s branch point of order m - 1 at w, whenever
m» 1. It is clear that this branch point order depends
only on the given interior element and does not vary
with the various meromorphic elements which may be used
to define 1t. The orders of zeros or poles of an inter-
ior element are similarly defined as the orders of the
zeros or poles of defining meromorphic eiements.

Methods. The definition of an interior trapsforms-
tion 1s such that f'(z) does not exist in general. The
classical use of the Cauchy integral

z dz -

: o S I
omi c fiz

to find the difference between the mumber of zeros and
poles of f(z) within C is thus unavailable,at least in
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any a priori sense.  Branch points at ordinary points
cannot be located in general as zeros of f'(z). 1In the
classical theory f'(z) 1s either null or infinite within
C, or defines a direction represented by arc f'(z). -
Vector methods can then be used to locate the zeros of
f'(z), as in the case of one of the proofs of the funda-
mental theorem on algebra. These vector methods fail
in the general theory; at least 1in the absence of some
effective change of independent varlable in the large.
More important are positive advantages of topologlcal
methods. The classical treatment of boundary values by
means of an intéegral in general ignores extremal proper-
ties of boundary values, such.for example as the extremal
values of |f(z)|. The images gy under w = f(z) of the
boundary curves Bi’ if locally simple, have important
topological properties which more than compensate for the
lack of derivatives. (A closed curve g 1s termed local-
1y simple if it is the contimous and locally 1 - 1
image of a unit circle:)

In a final section we shall introduce a deformation
theory of interior or meromorphic funbtions, considering
one-parameter families of such functions

w=F(z, t) (0§t

where for each t, F(i, t) is an interior transformation
defined on G, and such that the point w varies contim-
ouslj on the “"extended" w-plane with both z and t. Such
a one—pafameter‘family of interlior transformations will
be termed a deformation of F(z, 0) into F(z, 1). We ad-
mit deformations in which the zeros, poles and branch
point antecedents are held fast, and put functions f(z)
which can be thus deformed into each other, into the same
restricted deformation class. Deformations are also ad-
mitted in which the number but not the position of the
zeros, poles, and branch point antecedents are held fast.
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Topological invariants of the admlssible deformations
have been determined which characterize the deformstior.
classes whether restricted or unrestricted. A question
of great interest is whether the deformation classes
defined by a use of meromorphic functions alone are
identical with those defined when the more general inter-
lor transformations are used. Detalls will not be gziven.
For'prbofs see Morse and Heins (2).

In general one seeks to distinguish those basic
theorems on meromorphic functions which can be estab-
lished for meromorphic functlons but not for interior
transformations. One such theorem 1s the Liouville theo-
- rem that a function which is analytic in the finite
z-plane and bounded 1n absolute value, is constant. Thils
is not true if stated for interlor transformations. One
can indeed map the finite z-plane homeomorphically on the
interior of the circle |w| { 1 by the interior transform-
ationw = z/(1 + |z|); defined for every finite z.
Clearly f(z) is not constant. On the other hand, we shall
see that many theorems hold equally well for meromorphic
functions and interior transformations.

§2. Pseudo-harmonic functions
The study of meromorphic functions leads naturally
to harmonic functions. In a similar manmer the study of .
interior transformations leads tc functions which we shall
call pseudo-harmonic and shall presently define.
We begin by considering the function

(2.0) U(x, y) = log 1£(2)]

in case f(z) is meromorphic. As is well known this is
the real part of log f(z) and is accordingly harmonic
whenever the continucus branches of log f(z) are analytic.
Thus U(x, y) 1s harmonlc at every point 7z = x + iy not a
zerc or pole of f(z). Ilet z = o be a zsro or pole of
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f(z). Then f(z) admits a representation
f(z) = (z - a)™A(z) (A(a) # 0)

where A(z) is analytic at z = a. Neighboring z - a, U
thus has the form

mlog |z - al + w(x, y)

where w (x, y) is harmonic. The function U has a loga-
rithmic pole at z = a. More generally one considers har-
monic functions of the form

k log |z - al + w(x, y) (k # 0)

where k 1is real but not necessarily an integer.

The critical points of U in (2.0) in the ordinary
sense are the points at which Uk = Uy = 0. By virtue of
the Cauchy-Riemann differential equations, when f(z) # o
each such critical point is a zero of

1
—%; log f(z) = %Té%l R

and 1s thus a zero of f'(z). Thus the zeros and poles of
f(z) are reflected by the logarithmic poles of U(x,y) and
the zeros of f'(z) by the critical points of u.

Before coming to the definition of a pseudo-harmonic
function, it will be helpful to give a description of the
level arcs through a given point (xo, yo) of a non-con-
stant harmonic function U. We are concerned with the
locus

_(2'1) U(X, Y) - U(xo: Yo') =0
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neighboring (xo, yo). The harmonic function U is ths
real part of an analytic function £(z)., TIf zZ, =
Xy + iyo, f(z) - f(zo) vanishes at Z, and has the form

(2.2) £(z) - £(z4) = (z - z)"A(2) (A(zy) # 0.)

We shall make a conformal transformation of a neighbor-
hood of z, following which the desired level curves will

appear as stralight lines. This conformal transformation
has the form

(2.3) W= (z -z )A/M(z)

where any continuous single-valued branch of the mth
root may be used. The transformation (2.3) is locally

1 - 1 and conformal neighboring Z,, since at z,

W ma'Mz ) 4o,

In terms of the variable w,
f(z) - f(zo) = wo,

If w = u + 1v the required level lines are the level
lines through the origin of

R(u + iv)® (R = Real part)

for example, if m = 2, the level lines of u® - vz. If
(r, ®) are polar coordinates in the w-plane

W - rm(cos me + 1 sin me).
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- Thus by virtue of the transformation from (x, y) to
(u, v) to (r, 8)

(2.4) U(x, y) - U(xo, Vo) = ™cos me.

In the (u, v) plane the required level lines are
rays on which cos mé = 0. There are 2m of these rays,
each meking an angle of E with 1ts successor. For ex-
ample, if m= 1, the directions are 32-, 21- . If m= 2 the
directions are

%)um’?,%[’

that 1s, the lines of slope #1. Since our transformation
from the (x, y) plane to the (u, v)-plane was conformal,
it follows that the level curves through (xo, yo) consist
of m curves without singularity, each making an angle of

% at (xo, yo) with 1its successor. Another way of putting

this result follows.

TI{EOREM* 2.1. let (xo, yo) be a point at which U is
harmonic. Suppose U is not constant. There exists an
arblitrarily small neighborhood N of (xo. Y,) whose clo-
sure 1is the homeomorph of a plane circular disc such that
(xo, yo) corresponds to the center of the disc and the

locus

(2.5) U(x, ) = U(xos .yo) = 0

corresponds to a set of 2m rays leading from the disc
center and making successive sectors of central angle %.
As a variable point crosses any one of these level lines
(except at (x,, Fo))'l-'-l.!ﬁ difference (2.5) changes sign.

*Theorem 2.1 stated for pseudo-harmonic functions will be
termed Theorem 2.1a.



§2. PSEUDO-HARMONIC FUNCTIONS q

The first statement of the theorem is an immediste
consequence of the mapping of the (x, y)-plane into the
(u, v)-plane as above. One chooses the disc r < ry in
the (u, v)-plane with r, 80 small that the mapping of the
(x, y)-plane into the (u, v)-plane is 1 - 1 and conformal
for r g ry- The second statemeéent of the theorem follgws'
from (2.4) and the fact that cos me changes sign with in-
creasing e whenever it vanishes.

With U non-constant, the smallest value of m in the
theorem is 1, in which case there 1s but one non-singuler
level curve through (xb, yo). A particular consequence
of the theorem is that U can never assume a relative max-
imum or minimum at a point (xo, ¥o) neighboripg which 1t
1s harmonic. For one sees that U(x, y) - U(xb; yo) is
both positive and negative in every neighborhood of
(Xgs ¥g)e , ,

Definition of pseudo-harmonic functioms. Let
u(x, y) be a function which is harmonic and not identi-
cally constant in a neighborhood N of a point (xo, yo).
Let the points of N be subjected to an arbitrary sense-
preserving homeomorphism T in which N corresponds to an-
other nelighborhood N! of_(xo, yo) and the point (x, y)
on N corresponds to a point (x', y') on N'. It will be
convenlient to suppose that (xo, yo) corresponds to itself
under T. Under T set

(2.6) u(x, y) = U(x', y').

The function U(x', y') will be termed pseudo-harmonic on
N'. This definition will be extended to the case where
u(x, y) has a logarithmic pole at (xo, yo). In this case

u(x, y) =k log |z -»zor + w(x, y) (k ¢ 0)

where w(x, y) i1s harmonic in a neighborhood of (xo, yo).
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Under the above homeomorphism T, relation (2.6) defines
what is termed a pseudo-harmonic function with logarith-
mic pole at (xo,yo). More generally, we shall admit func-
tions U(x, y) which are pseudo-harmonic, except for log-
arithmic poles, in some neighborhood of every polnt of
the region G and are continuous on the boundary of G.
With the above deflnition of a pseudo-harmonic func-
tion, it is clear that the level curves of a function U
which is pseudo-harmonic in the neighborhood of a point
(xo, yo) of G are such that Theorem 2.1a holds (i.e.,
Theorem 2.1 with "pseudo-harmonic" replacing "harmonic").
As a corollary it follows that a pseudo-harmonic function

assumes & finite relative maximum or minimum at no point
of G.

§3. Critical points of U on G.

Points of G at which U ¢ will be said to be below
¢; those at which U > c, above ¢. Let (x45 ¥) be a
point of G not a logarithmic pole and set

U(xo, yO) = C.

Refer to Theorem 2.1a., This theorem gives a canonical
repreaentation of the level arcs of U ending at (xo, yo).
The nejghborhood N of (xo, yo) of Theorem 2.1a will be
termed canonical. Any one of the open, connected subsets
of N bounded by two successive arcs at the level ¢ and
the intercepted arc of the boundary of N will be called a
gsector of N. There are m sectors of N pelow ¢, end m
sectors above ¢c. If m = 1 the point (x,, yo) will be
termed ordinary, otherwise critical. When m > 1 the num-
ber m - 1 will be called the multiplicity of the critical
point (xo, yo) of G. For our purposes the essential top-
ological characteristic of these critical points is the
exlstence of two or more sectors of a canonical neighbor-



