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STOCHASTIC PROCESSES FOR PHYSICISTS
Understanding Noisy Systems

Stochastic processes are an essential part of numerous branches of physics, as well
as-biology, chemistry, and finance. This textbook provides a solid understanding
of stochastic processes and stochastic calculus in physics, without the need for
measure theory.

In avoiding measure theory, this textbook gives readers the tools necessary to
use stochastic methods in research with a minimum of mathematical background.
Coverage of the more exotic Levy processes is included, as is a concise account
of numerical methods for simulating stochastic systems driven by Gaussian noise.
The book concludes with a non-technical introduction to the concepts and jargon
of measure-theoretic probability theory.

With over 70 exercises, this textbook is an easily accessible introduction to
stochastic processes and their applications, as well as methods for numerical
simulation, for graduate students and researchers in physics.

KURT JACOBS is an Assistant Professor in the Physics Department at the Univer-
sity of Massachusetts, Boston. He is a leading expert in the theory of quantum feed-
back control and the measurement and control of quantum nano-electro-mechanical
systems.
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Preface

This book is intended for a one-semester graduate course on stochastic methods.
It is specifically targeted at students and researchers who wish to understand and
apply stochastic methods to problems in the natural sciences, and to do so without
learning the technical details of measure theory. For those who want to familiarize
themselves with the concepts and jargon of the “modern” measure-theoretic for-
mulation of probability theory, these are described in the final chapter. The purpose
of this final chapter is to provide the interested reader with the jargon necessary
to read research articles that use the modern formalism. This can be useful even if
one does not require this formalism in one’s own research.

This book contains more material than I cover in my current graduate class on
the subject at UMass Boston. One can select from the text various optional paths
depending on the purpose of the class. For a graduate class for physics students
who will be using stochastic methods in their research work, whether in physics or
interdisciplinary applications, I would suggest the following: Chapters 1, 2, 3 (with
Section 3.8.5 optional), 4 (with Section 4.2 optional, as alternative methods are
given in 7.7), 5 (with Section 5.2 optional), 7 (with Sections 7.8 and 7.9 optional),
and 8 (with Section 8.9 optional). In the above outline I have left out Chapters 6, 9
and 10. Chapter 6 covers numerical methods for solving equations with Gaussian
noise, and is the sort of thing that can be picked-up at a later point by a student if
needed for research. Chapter 9 covers Levy stochastic processes, including exotic
noise processes that generate probability densities with infinite variance. While this
chapter is no more difficult than the preceding chapters, it is a more specialized
subject in the sense that relatively few students are likely to need it in their research
work. Chapter 10, as mentioned above, covers the concepts and jargon of the
rigorous measure-theoretic formulation of probability theory.

A brief overview of this book is as follows: Chapters 1 (probability theory with-
out measure theory) and 2 (ordinary differential equations) give background mat-
erial that is essential for understanding the rest of course. Chapter 2 will be almost
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xii Preface

all revision for students with an undergraduate physics degree. Chapter 3 covers all
the basics of Ito calculus and solving stochastic differential equations. Chapter 4
introduces some further concepts such as auto-correlation functions, power spectra
and white noise. Chapter 5 contains two applications (Brownian motion and option
pricing), as well as a discussion of the Stratonovich formulation of stochastic equa-
tions and its role in modeling multiplicative noise. Chapter 6 covers numerical
methods for solving stochastic equations. Chapter 7 covers Fokker—Planck equa-
tions. This chapter also includes applications to reaction—diffusion systems, and
pattern formation in these systems. Chapter 8 explains jump processes and how they
are described using master equations. It also contains applications to population
dynamics and neuron behavior. Chapter 9 covers Levy processes. These include
noise processes that generate probability densities with infinite variance, such as
the Cauchy distribution. Finally Chapter 10 introduces the concepts and jargon of
the “modern” measure-theoretic description of probability theory.

While I have corrected many errors that found their way into the manuscript, it
is unlikely that I eliminated them all. For the purposes of future editions I would
certainly be grateful if you can let me know of any errors you find.
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1

A review of probability theory

In this book we will study dynamical systems driven by noise. Noise is something
that changes randomly with time, and quantities that do this are called stochastic
processes. When a dynamical system is driven by a stochastic process, its motion
too has a random component, and the variables that describe it are therefore also
stochastic processes. To describe noisy systems requires combining differential
equations with probability theory. We begin, therefore, by reviewing what we will
need to know about probability.

1.1 Random variables and mutually exclusive events

Probability theory is used to describe a situation in which we do not know the
precise value of a variable, but may have an idea of the relative likelihood that it
will have one of a number of possible values. Let us call the unknown quantity X.
This quantity is referred to as a random variable. If X is the value that we will
get when we roll a six-sided die, then the possible values of X are 1,2, ...,6. We
describe the likelihood that X will have one of these values, say 3, by a number
between 0 and 1, called the probability. If the probability that X = 3 is unity, then
this means we will always get 3 when we roll the die. If this probability is zero,
then we will never get the value 3. If the probability is 2/3 that the die comes up
3, then it means that we expect to get the number 3 about two thirds of the time, if
we roll the die many times.

The various values of X, and of any random variable, are an example of mutually
exclusive events. That is, whenever we throw the die, X can have only one of the
values between 1 and 6, no more and no less. Rather obviously, if the probability
for X tobe 3 is 1/8, and for X to be 6 is 2/8, then the probability for X to be either
3o0r6is 1/8 +2/8 = 3/8. That is, the total probability that one of two or more
mutually exclusive events occurs is the sum of the probabilities for each event. One
usually states this by saying that “mutually exclusive probabilities sum”. Thus, if
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Figure 1.1. An illustation of summing the probabilities of mutually exclusive
events, both for discrete and continuous random variables.

we want to know the probability for X to be in the range from 4 to 6, we sum all
the probabilities for the values from 4 to 6. This is illustrated in Figure 1.1. Since
X always takes a value between | and 6, the probability for it to take a value in this
range must be unity. Thus, the sum of the probabilities for all the mutually exclusive
possible values must always be unity. If the die is fair, then all the possible values
are equally likely, and each is therefore equal to 1/6.

Note: in mathematics texts it is customary to denote the unknown quantity
using a capital letter, say X, and a variable that specifies one of the possible
values that X may have as the equivalent lower-case letter, x. We will use this
convention in this chapter, but in the following chapters we will use a lower-case
letter for both the unknown quantity and the values it can take, since it causes no
confusion.

In the above example, X is a discrete random variable, since it takes the discrete
setof values 1, ..., 6. If instead the value of X can be any real number, then we say
that X is a continuous random variable. Once again we assign a number to each of
these values to describe their relative likelihoods. This number is now a function of
x (where x ranges over the values that X can take), called the probability density,
and is usually denoted by Px(x) (or just P(x)). The probability for X to be in the
range from x = a to x = b is now the area under P(x) from x = a to x = b. That
is

b
Prob(a < X < b) =/ P(x)dx. (1.1)

a
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A Gaussian Probability Density
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Figure 1.2. A Gaussian probability density with variance V = I, and mean (X) = 0.

This is illustrated in Figure 1.1. Thus the integral of P(x) over the whole real line
(from —oo to 0o) must be 1, since X must take one of these values:

f P(x)dx = 1. (1.2)

o0

The average of X, also known as the mean, or expectation value, of X is defined
by

o
(X) E/ P(x)xdx. (1.3)
—00
If P(x) is symmetric about x = 0, then it is not difficult to see that the mean of X
is zero, which is also the center of the density. If the density is symmetric about
any other point, say x = a, then the mean is also a. This is clear if one considers a
density that is symmetric about x = 0, and then shifts it along the x-axis so that it
is symmetric about x = a: shifting the density shifts the mean by the same amount.

The variance of X is defined as

oo o0
Vy = / P(x)(x — (X)) dx = / P(x)x*dx — (X)* = (X} — (X)%. (1.4)
—00 —00
The standard deviation of X, denoted by ox and defined as the square root of the
variance, is a measure of how broad the probability density for X is — that is, how
much we can expect X to deviate from its mean value.

An important example of a probability density is the Gaussian, given by

2
=)=

P(x) = e 2. (1.5)

1
V2mo?
The mean of this Gaussian probability density is (X) = u and the variance is
V(x) = o2. A plot of this probability density in given in Figure 1.2.
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1.2 Independence

Two random variables are referred to as being independent if neither of their
probability densities depends on the value of the other variable. For example, if
we rolled our six-sided die two times, and called the outcome of the first roll X,
and the outcome of the second roll Y, then these two random variables would be
independent. Further, we speak of the event X = 3 (when the first die roll comes up
as 3) and the event Y = 6 as being independent. When two events are independent,
the probability that both of them occur (that X = 3 and Y = 6) is the product of
the probabilities that each occurs. One often states this by saying that “independent
probabilities multiply”. The reason for this is fairly clear if we consider first making
the die roll to obtain X. Only if X = 3 do we then make the second roll, and only if
that comes up 6 do we get the result X = 3 and Y = 6. If the first roll only comes
up 3 one eighth of the time, and the second comes up 6 one sixth of the time, then
we will only get both of them 1/8 x 1/6 = 1/48 of the time.

Once again this is just as true for independent random variables that take a
continuum of values. In this case we speak of the “joint probability density”,
P(x,y), that X is equal to x and Y is equal to y. This joint probability density is
the product of the probability densities for each of the two independent random
variables, and we write this as P(x, y) = Px(x)Py(y). The probability that X falls
within the interval [a, b] and Y falls in the interval [c, d] is then

b d
Prob(X € [a,b]and Y € [c,d]) = / / P(x, y)dydx

b d b d
=/ f Px(x)Py(y)dde=(/ PX(X)C[X) (/ Py(y)dy)

= Prob(X € [a, b]) x Prob(Y € [c, d]).

In general, if we have a joint probability density, P(xy, ..., xy), for the N
variables X, ..., Xy, then the expectation value of a function of the variables,
f(Xy,..., Xn), is given by integrating the joint probability density over all the
variables:

(f(Xl, ...,XN)> Z/ f(xl, ...,xN)P(xl,...,xN)dxl ...dXN. (]6)

It is also worth noting that when two variables are independent, then the expec-
tation value of their product is simply the product of their individual expectation
values. That is

(XY) = (X)(Y). (1.7)
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1.3 Dependent random variables

Random variables, X and Y, are said to be dependent if their joint probability
density, P(x, y), does not factor into the product of their respective probability
densities.

To obtain the probability density for one of the variables alone (say X), we
integrate the joint probability density over all values of the other variable (in this
case Y). This is because, for each value of X, we want to know the total probability
summed over all the mutually exclusive values that Y can take. In this context, the
probability densities for the single variables are referred to as the marginals of the
joint density.

If we know nothing about the value of Y, then our probability density for X is
just the marginal

0
Px(x) = / P(x,y)dy. (1.8)
—0oQ
If X and Y are dependent, and we learn the value of Y, then in general this will
change our probability density for X (and vice versa). The probability density for
X given that we know that ¥ =y, is written P(x|y), and is referred to as the

conditional probability density for X given Y.

To see how to calculate this conditional probability, we note first that P(x, y)
with y = a gives the relative probability for different values of x given that Y = a.
To obtain the conditional probability density for X given that Y = a, all we have
to do is divide P(x, a) by its integral over all values of x. This ensures that the
integral of the conditional probability is 1. Since this is true for any value of y, we
have

P(xly) ) (1.9)
xly)= ———"—"—-. .
) f_oooc P(x, y)dx
Note also that since
o0
Py(y) = / P(x, y)dx, (1.10)
—00

if we substitute this into the equation for the conditional probability above
(Eq. (1.9)) we have

P(x,y)
Py(y)
and further that P(x, y) = P(x|y)Py(y).

As an example of a conditional probability density consider a joint probability
density for X and Y, where the probability density for Y is a Gaussian with zero

P(xly) = : (1.11)



