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Preface

This book is written as an introduction to higher algebra for students with
a background of a year of calculus. The book developed out of a set of
notes for a sophomore—junior level course at the State University of New
York at Albany entitled Classical Algebra.

In the 1950s and before, it was customary for the first course in algebra
to be a course in the theory of equations, consisting of a study of
polynomials over the complex, real, and rational numbers, and, to a lesser
extent, linear algebra from the point of view of systems of equations.
Abstract algebra, that is, the study of groups, rings, and fields, usually
followed such a course.

In recent years the theory of equations course has disappeared. Without
it, students entering abstract algebra courses tend to lack the experience in
the algebraic theory of the basic classical examples of the integers and
polynomials necessary for understanding, and more importantly, for ap-
preciating the formalism. To meet this problem, several texts have recently
appeared introducing algebra through number theory.

This book combines the newer number-theoretic approach with the old
theory of equations. In fact, the book contains enough of each of elemen-
tary number theory and the theory of equations that a course in either
could be taught from it (see below). But the algebraic similarities of the
two subjects are such that both subjects can be developed in parallel, and
ideas customarily associated with one can be transferred to the other. Thus
the ideas of congruence and congruence classes, normally arising in
elementary number theory, can also be used with polynomials. Doing so
permits passage from the study of polynomials to the study of simple field
extensions, and in particular, leads to an exposition of finite fields.

There are, I feel, several advantages in beginning the study of higher
algebra by studying number theory and polynomial theory.
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First, the algebra is built on the student’s entire mathematical experi-
ence. The study of numbers and polynomial equations dominates the
precollege mathematical training. By building on this background a course
in algebra will be building on the strongest possible intuitive base. And
given such a base, the potential for reaching results of significance is high.
I hope that this potential is realized by this book’s theoretical development,
numerous applications, and exercises.

Second, the dominating algebraic idea in the development of the book is
that of congruence classes. The concept of quotient structure is perhaps the
most difficult of the concepts of abstract algebra. The experience of seeing
it in a variety of concrete contexts, and seeing worthwhile consequences of
its use, should greatly aid the student when subsequently it is seen in
abstract presentations. This particular feature of our approach is one
which was missing from traditional theory of equations courses, and also is
missing in courses in linear algebra used as background for abstract
algebra.

Third, the subject matter of the book is intrinsically worth studying.
Both number theory and the theory of equations have attracted the
attention of the very greatest mathematicians. In particular, two of Gauss’s
greatest achievements, the fundamental theorem of algebra and the law of
quadratic reciprocity, are important results in this book. One of the
important lines of research in modern algebraic geometry stems from
A. Weil’s 1949 paper on solutions of equations in finite fields, a topic
which is beyond the level, but very much in the tradition, of the material in
this book (see Ireland and Rosen (1982) for an exposition). But even at the
level of this book the subjects have attracted the notice of combinatorial
analysts and computer scientists in recent decades. A surprising amount of
the material in this book dates from since 1940. As I discovered only late
in the writing of this book, there is considerable overlap between it and the
mathematics in Chapter 4, “Arithmetic,” of D. E. Knuth’s fundamental
treatise, The Art of Computer Programming (Knuth, 1969). Thus the
mathematics in this book is worth learning for its own sake, apart from
any value it has in-preparing for more advanced mathematics.

The explicit prerequisites of the book consist for the most part only of
high school algebra (in the de facto sense, not in the sense of Abhyankar
(1976)—in his sense this is predominantly a high school algebra text). In
various places we assume some acquaintance with calculus; however, the
subject of differentiating polynomials is developed from the beginning
(Chapter II-6), and the one place where integration occurs explicitly
(Section II-5C) may be omitted.! Two-variable calculus is mentioned only
in the proof of the fundamental theorem of algebra (II-3), but either the
facts needed there can be taken on faith or the proof can be omitted. The

! Chapter 6 of Part II is referred to as Chapter I1-6 or simply as I1-6; if the reference occurs
within Part II, simply as Chapter 6. II-5C refers to Section C of Chapter II-5.
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use of infinite series is more substantial, however, particularly in connec-
tion with decimal expansions of fractions.

Several of the applications and a few of the theoretical sections use
matrices and ideas from linear algebra. Chapter I-9 is an overly concise
review of the necessary ideas. Sections C—F of I-9 should be used only for
reference. If linear algebra is lacking in the student’s background, the
chapters particularly to avoid are II-12 and the last half of III-9. The
remaining uses of linear algebra mainly involve simple matrix manipula-
tions as described in Section [-9A, and these are quickly learned.

Exercises are scattered throughout the text as well as collected at the
ends of sections. They range from routine examples to ingenious problems
to extensions of theory. The most nontrivial ones are starred; comments on
them are collected in the back of the book. Exercises which are mentioned
subsequently either in the text or in exercises are marked with a dagger,
and are indexed together with the subsequent references in the back of the
book.

There is more material in this book than would be appropriate for a one
semester course. For a year course it could be supplemented with a
not-too-geometric introduction to linear algebra (such as Zelinsky (1973)).
For a one semester course there are a variety of routes through the book.

The main development in Parts I and II is contained in

I—: 1-3, 4A, 5A, B, D, 6-8, 11, 14A;
II—: 1, 2, 3A, 4, 6, 8-10, 11A.

To get to the classification of finite fields (III-14) most efficiently,
follow the main development with

I1—: 1, 4,7, 8, 10, 11, (12), 13, 14.

To get to algebraic numbers (III-18) most efficiently, follow the main
development with

II1—: 1, 4, 7, 8, 10, 16A, B, 18-21.
To concentrate on elementary number theory, see

I—: all except 9C-F and 4B, 4C, 5C, 9B, 10, 13, 14B, 15 as desired;
II—: 1, 2A;

III—: 1-5, 16A, B, 17; then

II—: 3A, 8-10, 11A;

I1—: 7, 8, 10, 18-21.

To concentrate on theory of equations, see:

I—: 1-3, 4A, 6-8, 11, 14A;
I1—: all, omitting 3C, 5, 7, 11B, 12 as desired;
II1—: 1, 4, 6-8, 10, 11, 13-16.
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It is probably unwise to spend too much time in Chapter I-2. Also, part
of the uniqueness of this book lies in the chapters on applications, so it is
hoped that any route through the book will be chosen to allow time for
visits to some of the scenic wayside areas.

Finally, I wish to acknowledge with appreciation the contributions of
people who in various ways influenced the book: Ed Davis, for developing
and selling the idea for the course for which the book was written, and for
a number of useful comments on an early version of the notes; Bill
Hammond, for teaching from the notes and offering a number of improve-
ments; Violet Larney, for teaching from the notes graciously even though
her book (for a competing course) had just appeared; Morris Orzech,
Paulo Ribenboim, Tony Geramita, Ted Turner, and Ivan Niven, for a
variety of mathematical insights and ideas; and, especially, Malcolm
Smiley, for reading through and teaching from the manuscript in its late
stages and offering many substantial suggestions for improving the exposi-
tion, and David Drasin, for reading through and making many helpful
comments on the nearly completed manuscript. Also I wish to thank:
Michele Palleschi for typing most of the manuscript even though she didn’t
have to, and Mrs. Betty Turner and her staff for typing most of the
manuscript even though they weren’t supposed to; the Universities of
Illinois (Urbana) and Oregon for their hospitality during part of the time
the book was written; and Springer-Verlag, particularly Walter
Kaufmann-Buehler and Joe Gannon, for their professional treatment of
the manuscript. Most of all, my greatest thanks go to my wife Rhonda, for
putting up with my working on the manuscript at inconvenient hours at
inconvenient locations.

Fall, 1978 L. CHILDS

My thanks to those who pointed out misprints and errors in the first
printing, including Louis Brickman, Linda Deneen, Willlam Hammond,
Irving Kaplansky, Keith Kendig, Richard Patterson, Alan Sprague, Mel
Thornton, Ted Turner, S. Wang, and especially Ernst S. Selmer.

May, 1984 L. CHILDS

Many thanks to Frank Gerrish of Surrey, England, for finding and com-
municating to me over 300 misprints and other comments on the third
printing.

April, 1992 L. CHILDS
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[. INTEGERS

This part of the book is about the natural numbers and integers. Among
the highlights of this part, we show that every natural number factors
uniquely into a product of primes, define congruence mod m, and invent
new sets called congruence classes mod m, which for each m > 2 add and
multiply to form a new algebraic system called Z,,. Various related results
about numbers, and applications, fill out this part.
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